home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

raman karthik - an introduction to computational systems biology

An Introduction to Computational Systems Biology Systems-Level Modelling of Cellular Networks




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
97,98 €
NICEPRICE
93,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 05/2021
Edizione: 1° edizione





Note Editore

This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides,codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.




Sommario

Preface Introduction to modelling 1.1 WHAT IS MODELLING? 1.1.1 What are models? 1.2 WHYBUILD MODELS? 1.2.1 Why model biological systems? 1.2.2 Why systems biology? 1.3 CHALLENGES IN MODELLING BIOLOGICAL SYSTEMS 1.4 THE PRACTICE OF MODELLING 1.4.1 Scope of the model1.4.2 Making assumptions 1.4.3 Modelling paradigms 1.4.4 Building the model 1.4.5 Model analysis, debugging and (in)validation 1.4.6 Simulating the model 1.5 EXAMPLES OF MODELS 1.5.1 Lotka–Volterra predator–prey model 1.5.2 SIR model: a classic example 1.6 TROUBLESHOOTING 1.6.1 Clarity of scope and objectives 1.6.2 The breakdown of assumptions 1.6.3 Ismy model fit for purpose? 1.6.4 Handling uncertainties EXERCISES REFERENCES FURTHER READING Introduction to graph theory 2.1 BASICS 2.1.1 History of graph theory 2.1.2 Examples of graphs 2.2 WHYGRAPHS? 2.3 TYPES OF GRAPHS 2.3.1 Simple vs. non-simple graphs 2.3.2 Directed vs. undirected graphs 2.3.3 Weighted vs. unweighted graphs 2.3.4 Other graph types 2.3.5 Hypergraphs 2.4 COMPUTATIONAL REPRESENTATIONS OF GRAPHS 2.4.1 Data structures 2.4.2 Adjacency matrix 2.4.3 The laplacian matrix 2.5 GRAPH REPRESENTATIONS OF BIOLOGICAL NETWORKS 2.5.1 Networks of protein interactions and functional associations2.5.2 Signalling networks 2.5.3 Protein structure networks 2.5.4 Gene regulatory networks 2.5.5 Metabolic networks 2.6 COMMONCHALLENGES&TROUBLESHOOTING 2.6.1 Choosing a representation 2.6.2 Loading and creating graphs 2.7 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Structure of networks 3.1 NETWORK PARAMETERS 3.1.1 Fundamental parameters 3.1.2 Measures of centrality 3.1.3 Mixing patterns: assortativity 3.2 CANONICAL NETWORK MODELS 3.2.1 Erdos–Rényi (ER) network model 3.2.2 Small-world networks 3.2.3 Scale-free networks 3.2.4 Other models of network generation 3.3 COMMUNITY DETECTION 3.3.1 Modularity maximisation 3.3.2 Similarity-based clustering 3.3.3 Girvan–Newman algorithm 3.3.4 Other methods 3.3.5 Community detection in biological networks 3.4 NETWORKMOTIFS 3.4.1 Randomising networks 3.5 PERTURBATIONS TO NETWORKS 3.5.1 Quantifying efects of perturbation 3.5.2 Network structure and attack strategies 3.6 TROUBLESHOOTING 3.6.1 Is your network really scale-free? 3.7 SOFTWARE TOOLS EXERCISES REFERENCESFURTHER READING  Applications of network biology 4.1 THE CENTRALITY–LETHALITY HYPOTHESIS 4.1.1 Predicting essential genes fromnetworks 4.2 NETWORKS AND MODULES IN DISEASE 4.2.1 Disease networks 4.2.2 Identification of disease modules 4.2.3 Edgetic perturbation models 4.3 DIFFERENTIAL NETWORK ANALYSIS 4.4 DISEASE SPREADING ON NETWORKS 4.4.1 Percolation-based models 4.4.2 Agent-based simulations 4.5 MOLECULAR GRAPHS AND THEIR APPLICATIONS 4.5.1 Retrosynthesis 4.6 PROTEIN STRUCTURE, ENERGY & CONFORMATIONAL NETWORKS4.6.1 Protein folding pathways 4.7 LINK PREDICTION EXERCISES REFERENCES FURTHER READING  Introduction to dynamic modelling5.1 CONSTRUCTING DYNAMIC MODELS 5.1.1 Modelling a generic biochemical system 5.2 MASS-ACTION KINETIC MODELS 5.3 MODELLING ENZYME KINETICS 5.3.1 The Michaelis–Menten model 5.3.2 Extending the Michaelis–Menten model 5.3.3 Limitations of Michaelis–Menten models 5.3.4 Co-operativity: Hill kinetics 5.3.5 An illustrative example: a three-node oscillator 5.4 GENERALISED RATE EQUATIONS 5.4.1 Biochemical systems theory 5.5 SOLVING ODES 5.6 TROUBLESHOOTING 5.6.1 Handing stif equations 5.6.2 Handling uncertainty 5.7 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Parameter estimation 6.1 DATA-DRIVEN MECHANISTIC MODELLING: AN OVERVIEW 6.1.1 Pre-processing the data 6.1.2 Model identification 6.2 SETTING UP AN OPTIMISATION PROBLEM 6.2.1 Linear regression 6.2.2 Least squares 6.2.3 Maximumlikelihood estimation 6.3 ALGORITHMS FOR OPTIMISATION 6.3.1 Desiderata 6.3.2 Gradient-based methods 6.3.3 Direct search methods 6.3.4 Evolutionary algorithms 6.4 POST-REGRESSION DIAGNOSTICS 6.4.1 Model selection 6.4.2 Sensitivity and robustness of biological models 6.5 TROUBLESHOOTING 6.5.1 Regularisation 6.5.2 Sloppiness 6.5.3 Choosing a search algorithm 6.5.4 Model reduction 6.5.5 The curse of dimensionality 6.6 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Discrete dynamic models: Boolean networks 7.1 INTRODUCTION 7.2 BOOLEAN NETWORKS: TRANSFER FUNCTIONS 7.2.1 Characterising Boolean network dynamics 7.2.2 Synchronous vs. asynchronous updates 7.3 OTHER PARADIGMS 7.3.1 Probabilistic Boolean networks 7.3.2 Logical interaction hypergraphs 7.3.3 Generalised logical networks 7.3.4 Petri nets 7.4 APPLICATIONS 7.5 TROUBLESHOOTING 7.6 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Introduction to constraint-based modelling 8.1 WHAT ARE CONSTRAINTS? 8.1.1 Types of constraints 8.1.2 Mathematical representation of constraints 8.1.3 Why are constraints useful? 8.2 THE STOICHIOMETRICMATRIX 8.3 STEADY-STATEMASSBALANCE:FLUXBALANCEANALYSIS (FBA)8.4 THE OBJECTIVE FUNCTION 8.4.1 The biomass objective function 8.5 OPTIMISATION TO COMPUTE FLUX DISTRIBUTION 8.6 AN ILLUSTRATION 8.7 FLUX VARIABILITY ANALYSIS (FVA) 8.8 UNDERSTANDING FBA 8.8.1 Blocked reactions and dead-end metabolites 8.8.2 Gaps in metabolic networks 8.8.3 Multiple solutions8.8.4 Loops 8.8.5 Parsimonious FBA (pFBA) 8.8.6 ATP maintenance fluxes 8.9 TROUBLESHOOTING 8.9.1 Zero growth rate 8.9.2 Objective values vs. flux values 8.10 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Extending constraint-based approaches 9.1 MINIMISATION OF METABOLIC ADJUSTMENT (MOMA) 9.1.1 Fitting experimentally measured fluxes 9.2 REGULATORY ON-OFF MINIMISATION (ROOM) 9.2.1 ROOMvs.MoMA 9.3 BI-LEVEL OPTIMISATIONS 9.3.1 OptKnock9.4 INTEGRATING REGULATORY INFORMATION 9.4.1 Embedding regulatory logic: regulatory FBA (rFBA) 9.4.2 Informing metabolic models with omic data 9.4.3 Tissue-specific models 9.5 COMPARTMENTALISED MODELS 9.6 DYNAMIC FLUX BALANCE ANALYSIS (dFBA) 9.7 13C-MFA 9.8 ELEMENTARY FLUX MODES AND EXTREME PATHWAYS 9.8.1 Computing EFMs and EPs 9.8.2 Applications EXERCISES REFERENCES FURTHER READING Perturbations to metabolic networks10.1 KNOCK-OUTS 10.1.1 Gene deletions vs. reaction deletions 10.2 SYNTHETIC LETHALS 10.2.1 Exhaustive enumeration 10.2.2 Bi-level optimisation 10.2.3 Fast-SL: massively pruning the search space 10.3 OVER-EXPRESSION 10.3.1 Flux Scanning based on Enforced Objective Flux (FSEOF) 10.4 OTHER PERTURBATIONS 10.5 EVALUATING AND RANKING PERTURBATIONS 10.6 APPLICATIONS OF CONSTRAINT-BASED MODELS 10.6.1 Metabolic engineering 10.6.2 Drug target identification 10.7 LIMITATIONS OF CONSTRAINT-BASED APPROACHES 10.7.1 Scope of genome-scale metabolic models 10.7.2 Incorrect predictions 10.8 TROUBLESHOOTING10.8.1 Interpreting gene deletion simulations 10.9 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Modelling cellular interactions 11.1 MICROBIAL COMMUNITIES 11.1.1 Network-based approaches 11.1.2 Population-based and agent-based approaches 11.1.3 Constraint-based approaches 11.2 HOST–PATHOGEN INTERACTIONS (HPIs) 11.2.1 Network models 11.2.2 Dynamic models 11.2.3 Constraint-based models 11.3 SUMMARY11.4 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Designing biological circuits 12.1 WHAT IS SYNTHETIC BIOLOGY? 12.2 FROMLEGO BRICKS TO BIOBRICKS 12.3 CLASSIC CIRCUIT DESIGN EXPERIMENTS 12.3.1 Designing an oscillator: the repressilator 12.3.2 Toggle switch 12.4 DESIGNING MODULES 12.4.1 Exploring the design space 12.4.2 Systems-theoretic approaches 12.4.3 Automating circuit design 12.5 DESIGN PRINCIPLES OF BIOLOGICAL NETWORKS 12.5.1 Redundancy 12.5.2 Modularity 12.5.3 Exaptation 12.5.4 Robustness 12.6 COMPUTING WITH CELLS 12.6.1 Adleman’s classic experiment 12.6.2 Examples of circuits that can compute 12.6.3 DNA data storage 12.7 CHALLENGES 12.8 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING  Robustness and evolvability of biological systems 13.1 ROBUSTNESS IN BIOLOGICAL SYSTEMS 13.1.1 Key mechanisms 13.1.2 Hierarchies and protocols 13.1.3 Organising principles 13.2 GENOTYPE SPACES AND GENOTYPE NETWORKS 13.2.1 Genotype spaces 13.2.2 Genotype–phenotype mapping 13.3 QUANTI




Autore

Dr. Karthik Raman is an Associate Professor at the Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras. He co-founded and co-ordinates the Initiative for Biological Systems Engineering and is a core member of the Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI). He has been a researcher in the area of systems biology for the last 15+ years and has been teaching a course on systems biology for the last eight years, to (mostly) engineers from different backgrounds. His lab works on computational approaches to understand and manipulate biological networks, with applications in metabolic engineering and synthetic biology.










Altre Informazioni

ISBN:

9781138597327

Condizione: Nuovo
Collana: Chapman & Hall/CRC Computational Biology Series
Dimensioni: 9.25 x 6.25 in Ø 1.42 lb
Formato: Copertina rigida
Illustration Notes:49 b/w images and 49 line drawings
Pagine Arabe: 336
Pagine Romane: xxii


Dicono di noi