libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

artin michael - algebra
Zoom

Algebra Aus dem Englischen übersetzt von Annette A’Campo




Disponibilità: Normalmente disponibile in 10 giorni


PREZZO
82,98 €
NICEPRICE
78,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Tedesco
Editore:

Birkhäuser

Edizione: 1993





Trama

Diese ungewöhnliche Einführung in lineare Algebra und Algebra ist über viele Jahre aus den Vorlesungsnotizen des Autors gewachsen und zeichnet sich aus durch einen harmonischen Aufbau des behandelten Stoffes. Als eine Besonderheit umfasst dieser nebst den üblichen Inhalten auch die Betonung spezieller Themen wie Symmetrie, lineare Gruppen und quadratische Zahlkörper. Der Text besticht insbesondere durch eine für den Studenten besonders verständliche Präsentation des Stoffes. Zahlreiche Beispiele und Übungsaufgaben erhöhen seinen Wert als studienbegleitende Literatur für die ersten drei bis vier Semester des Studiums der Mathematik und verwandter Gebiete. Dieses sehr lebendig geschriebene Lehrbuch umfasst sowohl lineare Algebra (Matrizen, Vektorräume, lineare Abbildungen und Bilinearformen) als auch Algebra (Gruppen, Ringe, Moduln, Darstellungen von Gruppen und Körpertheorie). Darüberhinaus werden die Themen Symmetrie, lineare Gruppen und quadratische Zahlkörper ausführlicher behandelt. Diese Kapitel illustrieren nicht nur die enge Verbindung zwischen Algebra einerseits und Geometrie bzw. Zahlentheorie andererseits, sie lassen auch besonders viel von der Begeisterung und dem persönlichen Engagement des Autors spüren. Er hat in dieses Buch die Summe der Erfahrungen einfliessen lassen, die er im Laufe vieler Jahre mit Algebravorlesungen gemacht hat. Der Stoff wird sehr verständlich präsentiert und ist mit einer Fülle von Beispielen angereichert, die die abstrakte Begriffsbildungen motivieren und veranschaulichen. Dadurch ist das Buch, das ausserdem zahlreiche Übungsaufgaben enthält, auch zum Selbststudium hervorragend geeignet.




Sommario

1 Matrizen.- 1. Matrizenkalkül.- 2. Zeilenreduktion.- 3. Determinanten.- 4. Permutationsmatrizen.- 5. Cramersche Regel.- Aufgaben.- 2 Gruppen.- 1. Die Definition einer Gruppe.- 2. Untergruppen.- 3. Isomorphismen.- 4. Homomorphismen.- 5. Äquivalenzrelationen und Partitionen.- 6. Nebenklassen.- 7. Einschränkung von Homomorphismen auf Untergruppen.- 8. Produkte von Gruppen.- 9. Rechnen mit Kongruenzen.- 10. Faktorgruppen.- Aufgaben.- 3 Vektorräume.- 1. Reelle Vektorräume.- 2. Abstrakte Körper.- 3. Basen und Dimension.- 4. Rechnen mit Basen.- 5. Unendlichdimensionale Vektorräume.- 6. Direkte Summen.- Aufgaben.- 4 Lineare Abbildungen.- 1. Die Dimensionsformel.- 2. Lineare Abbildungen und Matrizen.- 3. Endomorphismen und Eigenvektoren.- 4. Das charakteristische Polynom.- 5. Orthogonale Matrizen und Drehungen.- 6. Diagonalisierbarkeit.- 7. Systeme von Differentialgleichungen.- 8. Die Exponentialabbildung für Matrizen.- Aufgaben.- 5 Symmetrie.- 1. Symmetrie ebener Figuren.- 2. Die Bewegungsgruppe der Ebene.- 3. Endliche Gruppen von Bewegungen.- 4. Diskrete Gruppen von Bewegungen.- 5. Abstrakte Symmetrie: Gruppenoperationen.- 6. Die Operation auf Nebenklassen.- 7. Zerlegen und Zählen.- 8. Permutationsdarstellungen.- 9. Endliche Untergruppen der Drehgruppe.- Aufgaben.- 6 Mehr Über Gruppen.- 1. Operationen einer Gruppe auf sich.- 2. Klassengleichung der Ikosaedergruppe.- 3. Operationen auf Teilmengen.- 4. Die Sylowschen Sätze.- 5. Die Gruppen der Ordnung 12.- 6. Rechnen in der symmetrischen Gruppe.- 7. Die freie Gruppe.- 8. Erzeugende und Relationen.- 9. Der Todd—Coxeter—Algorithmus.- Aufgaben.- 7 Bilinearformen.- 1. Definition einer Bilinearform.- 2. Symmetrische Bilinearformen.- 3. Geometrie und positiv definite Bilinearformen.- 4. Hermitesche Formen.- 5. DerSpektralsatz.- 6. Kegelschnitte und Quadriken.- 7. Der Spektralsatz für normale Endomorphismen.- 8. Schiefsymmetrische Bilinearformen.- 9. Zusammenfassung der Ergebnisse für Matrizen.- Aufgaben.- 8 Lineare Gruppen.- 1. Klassische lineare Gruppen.- 2. Die spezielle unitäre Gruppe SU2.- 3. Die orthogonale Darstellung von SU2.- 4. Die spezielle lineare Gruppe SL2(?).- 5. Einparameteruntergruppen.- 6. Lie—Algebren.- 7. Translation in einer Gruppe.- 8. Einfache Gruppen.- Aufgaben.- 9 Darstellungen Von Gruppen.- 1. Definition einer Darstellung.- 2. Invariante Formen und unitäre Darstellungen.- 3. Kompakte Gruppen.- 4. Invariante Unterräume und irreduzible Darstellungen.- 5. Charaktere.- 6. Permutationsdarstellungen und die reguläre Darstellung.- 7. Darstellungen der Ikosaedergruppe.- 8. Eindimensionale Darstellungen.- 9. Das Schursche Lemma und der Beweis der Orthogonalitätsrelationen.- 10. Darstellungen der Gruppe SU2.- Aufgaben.- 10 Ringe.- 1. Definition eines Ringes.- 2. Formale Konstruktion von ganzen Zahlen und Polynomen.- 3. Homomorphismen und Ideale.- 4. Restklassenringe und Relationen in einem Ring.- 5. Adjunktion von Elementen.- 6. Integritätsbereiche und Quotientenkörper.- 7. Maximale Ideale.- 8. Algebraische Geometrie.- Aufgaben.- 11 Faktorzerlegung.- 1. Faktorzerlegung von ganzen Zahlen und Polynomen.- 2. Faktorielle Ringe, Hauptidealringe und euklidische Ringe.- 3. Das Gaußsche Lemma.- 4. Explizite Zerlegung von Polynomen.- 5. Primelemente im Ring der ganzen Gaußschen Zahlen.- 6. Ganze algebraische Zahlen.- 7. Faktorzerlegung in imaginär-quadratischen Zahlkörpern.- 8. Faktorzerlegung von Idealen.- 9. Der Zusammenhang zwischen Primidealen und Primzahlen.- 10. Idealklassen in imaginär-quadratischen Zahlkörpern.- 11. Reell—quadratischeZahlkörper.- 12. Einige diophantische Gleichungen.- Aufgaben.- 12 Moduln.- 1. Die Definition eines Moduls.- 2. Matrizen, freie Moduln und Basen.- 3. Das Prinzip der universellen Gültigkeit von Identitäten.- 4. Diagonalisierbarkeit von ganzzahligen Matrizen.- 5. Erzeugende und Relationen für Moduln.- 6. Der Struktursatz für abelsche Gruppen.- 7. Anwendung auf Endomorphismen von Vektorräumen.- 8. Freie Moduln über Polynomringen.- Aufgaben.- 13 Körper.- 1. Beispiele von Körpern.- 2. Algebraische und transzendente Elemente.- 3. Der Grad einer Körpererweiterung.- 4. Konstruktionen mit Zirkel und Lineal.- 5. Symbolische Adjunktion von Nullstellen.- 6. Endliche Körper.- 7. Funktionenkörper.- 8. Transzendente Erweiterungen.- 9. Algebraisch abgeschlossene Körper.- Aufgaben.- 14 Galoistheorie.- 1. Der Hauptsatz der Galoistheorie.- 2. Kubische Gleichungen.- 3. Symmetrische Funktionen.- 4. Primitive Elemente.- 5. Beweis des Hauptsatzes.- 6. Gleichungen vierten Grades.- 7. Kummersche Erweiterungen.- 8. Kreisteilungserweiterungen.- 9. Gleichungen fünften Grades.- Aufgaben.- Anhang Vorkenntnisse.- 1. Mengenlehre.- 2. Beweistechniken.- 3. Topologie.- 4. Der Satz über implizite Funktionen.- Aufgaben.










Altre Informazioni

ISBN:

9783764359386

Condizione: Nuovo
Collana: Birkhäuser Advanced Texts Basler Lehrbücher
Dimensioni: 244 x 170 mm
Formato: Brossura
Illustration Notes:XIV, 705 S.
Pagine Arabe: 705
Pagine Romane: xiv
Traduttore: A'Campo, Annette


Dicono di noi