libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

schenk andreas - advanced physical models for silicon device simulation
Zoom

Advanced Physical Models for Silicon Device Simulation




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
162,98 €
NICEPRICE
154,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 07/1998
Edizione: 1998





Trama

Device simulation has two main purposes: to understand and depict the physical processes in the interior of a device, and to make reliable predictions of the behavior of an anticipated new device generation. Towards these goals the quality of the physical models is decisive. The introductory chapter of this book contains a critical review on models for silicon device simulators, which rely on moments of the Boltzmann equation. With reference to fundamental experimental and theoretical work an extensive collection of widely used models is discussed in terms of physical accuracy and application results. This review shows that the quality and efficiency of the phys­ ical models, which have been developed for the purpose of numerical simulation over the last three decades, is sufficient for many applications. Nevertheless, the basic understanding of the microscopic processes, as well as the uniqueness and accuracy of the models are still unsatisfactory. Hence, the following chapters of the book deal with the derivation of physics-based models from a microscopic level, also using new approaches of "taylored quantum-mechanics". Each model is compared with experimental data and applied to a number of simulation exam­ ples. The problems when starting from "first principles" and making the models suitable for a device simulator will also be demonstrated. We will show that demands for rapid computation and numerical robustness require a compromise between physical soundness and analytical simplicity, and that the attainable accuracy is limited by the complexity of the problems.




Sommario

1 Simulation of Silicon Devices: An Overview.- 1.1 Transport Models.- 1.1.1 Quantum Transport.- 1.1.2 Boltzmann Equation.- 1.1.3 Method of Moments.- 1.1.3.1 Transport Models.- 1.1.4 Thermodynamic Approach.- 1.2 Review of Physical Models for Drift-Diffusion Equations.- 1.2.1 Effective Intrinsic Density.- 1.2.1.1 Effective Masses and Effective Densities of States.- 1.2.1.2 Intrinsic Gap and Intrinsic Carrier Density.- 1.2.1.3 Band Gap Narrowing: Theoretical Models.- 1.2.1.4 Band Gap Narrowing: Empirical Models.- 1.2.1.5 Effective Intrinsic Density with Fermi Statistics.- 1.2.2 Mobility.- 1.2.2.1 Theoretical Background.- 1.2.2.2 Empirical Models for the Low Field Mobility.- 1.2.2.3 Empirical High-Field Corrections.- 1.2.2.4 Some Remarks.- 1.2.3 Generation-Recombination.- 1.2.3.1 Shockley-Read-Hall Recombination.- 1.2.3.2 Auger Recombination.- 1.2.3.3 Impact Ionization.- 1.3 Simulation Example: Gated Diode.- References.- 2 Mobility Model for Hydrodynamic Transport Equations.- 2.1 Analytical Model of the Electron Mobility.- 2.1.1 Variational Method with a Heated Maxwellian.- 2.1.2 Scattering Mechanisms.- 2.1.2.1 Intravalley Acoustic-Phonon Scattering.- 2.1.2.2 Intervalley Scattering.- 2.1.2.3 Impurity Scattering.- 2.1.3 Analytical Results for the Partial Mobilities.- 2.1.3.1 Non-Elastic Approach for Intravalley Acoustic-Phonon Scattering.- 2.1.3.2 Intervalley Scattering.- 2.1.3.3 Impurity Scattering Including Dispersive Screening.- 2.2 Parameter Fit and Comparison with Experimental Data.- 2.2.1 Fit Procedure.- 2.2.2 Dependence on Ambient Temperature.- 2.2.3 Dependence on Carrier Temperature, Velocity Saturation.- 2.2.4 Doping Dependence.- 2.3 Hole Mobility.- 2.3.1 Band Model.- 2.3.2 Analytical Model for the Hole Mobility.- 2.3.3 Dependence on Ambient Temperature, Carrier Temperature, and Doping.- 2.4 Simulation Results.- References.- 3 Advanced Generation-Recombination Models.- 3.1 Band-to-Band Tunneling.- 3.1.1 Microscopic Model.- 3.1.1.1 Kubo Formalism for the Tunneling Conductivity.- 3.1.1.2 Direct (Zero Phonon) Transitions.- 3.1.1.3 Indirect (Phonon-Assisted) Transitions.- 3.1.2 Model for Device Simulation.- 3.1.2.1 Simplifications.- 3.1.2.2 Comparison of Direct and Indirect Band-to-Band Tunneling.- 3.1.3 Field and Angular Dependence.- 3.2 Defect-Assisted Tunneling.- 3.2.1 Field Enhancement Factors for SRH Lifetimes.- 3.2.2 Simplified Models of the Field Enhancement.- 3.2.2.1 High-Temperature Approximation.- 3.2.2.2 Low-Temperature Approximation.- 3.2.3 On the Temperature Dependence of SRH Lifetimes.- 3.2.3.1 High-Temperature Approximation.- 3.2.3.2 Low-Temperature Approximation.- 3.2.4 Example: The Gold Acceptor in Silicon.- 3.3 Numerical Simulation of Tunnel Generation Currents.- 3.3.1 Band-to-Band Tunneling versus Defect-Assisted Tunneling.- 3.3.2 Local versus Nonlocal Description.- 3.4 Coupled Defect-Level Recombination.- 3.4.1 Theory of Coupled Defect-Level Recombination.- 3.4.1.1 Steady-State Recombination Rate.- 3.4.1.2 Field-Enhancement of the Coupled Defect-Level Rate.- 3.4.2 Simulation of LPE-Grown Junctions.- 3.4.3 Effect of Different Two-Level Systems.- References.- 4 Metal-Semiconductor Contact.- 4.1 Emission Current Through a Parabolic Barrier.- 4.2 Interpolation Scheme for the Transmission Probability.- 4.3 Analytical Model of the Contact Current.- 4.4 Boundary Conditions for Device Simulation.- 4.5 Comparison with Measurements.- 4.6 Results of Numerical Simulation.- 4.6.1 Implementation.- 4.6.2 Schottky nin Diode.- 4.6.3 Merged pin/Schottky (MPS) Diode.- References.- 5 Modeling Transport Across Thin Dielectric Barriers.- 5.1 One-Step Tunneling.- 5.1.1 Transmission Probability.- 5.1.2 I (V)-Characteristics of Direct and FN Tunneling.- 5.2 Two-Step Multiphonon-Assisted Tunneling.- 5.3 Resonant Tunneling.- 5.4 Comparison of Two-Step Zero-Phonon Tunneling and Resonant Tunneling.- 5.5 Simulation of the Long-Term Charge Loss in EPROMs.- 5.5.1 Measurements.- 5.5.2 Simulated Field and High-Temperature Dependence of the Leakage Current.- 5.5.3 Comparison of Various Loss Mechanisms.- References.- 6 Summary and Outlook.- References.- Appendices.- B Evaluation of a Double Integral.- C Transmission Probability for a Parabolic Barrier.- D Asymptotic Forms and Interpolation of Cylinder Functions.- E Energy Limit for Gaussian Approximation.- G Probability of Resonant Tunneling.- References.- List of Figures.- List of Tables.




I LIBRI CHE INTERESSANO A CHI HA I TUOI GUSTI




I LIBRI ACQUISTATI DA CHI HA I TUOI GUSTI

Giallo in vacanza 2
Giallo in vacanza 5
Historia de una gaviota y del gato que le enseno' a volar. nivel a1
The canterbury tales . level b1/b2
Peter pan. level starter a1 - ga



Altre Informazioni

ISBN:

9783211830529

Condizione: Nuovo
Collana: Computational Microelectronics
Dimensioni: 244 x 170 mm Ø 840 gr
Formato: Copertina rigida
Illustration Notes:XVIII, 354 p.
Pagine Arabe: 354
Pagine Romane: xviii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X