Brownian Motion

;

97,98 €
93,08 €
AGGIUNGI AL CARRELLO
NOTE EDITORE
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.

SOMMARIO
Preface; Frequently used notation; Motivation; 1. Brownian motion as a random function; 2. Brownian motion as a strong Markov process; 3. Harmonic functions, transience and recurrence; 4. Hausdorff dimension: techniques and applications; 5. Brownian motion and random walk; 6. Brownian local time; 7. Stochastic integrals and applications; 8. Potential theory of Brownian motion; 9. Intersections and self-intersections of Brownian paths; 10. Exceptional sets for Brownian motion; Appendix A. Further developments: 11. Stochastic Loewner evolution and its applications to planar Brownian motion; Appendix B. Background and prerequisites; Hints and solutions for selected exercises; References; Index.

PREFAZIONE
This eagerly awaited graduate-level textbook covers all the essential elements of the theory of Brownian motion, a core area of probability theory, as well as the most recent research. The authors' focus on sample path properties presents a unique and modern point of view.

AUTORE
Peter Mörters is Professor of Probability and ESPRC Advanced Research Fellow at the University of Bath. His research on Brownian motion includes identification of the tail behaviour of intersection local times (with König), the multifractal structure of intersections (with Klenke), and the exact packing gauge of double points of three-dimensional Brownian motion (with Shieh).Yuval Peres is a Principal Researcher at Microsoft Research in Redmond, Washington. He is also an Adjunct Professor at the University of California, Berkeley and at the University of Washington. His research interests include most areas of probability theory, as well as parts of ergodic theory, game theory, and information theory.

ALTRE INFORMAZIONI
  • Condizione: Nuovo
  • ISBN: 9780521760188
  • Collana: Cambridge Series in Statistical and Probabilistic Mathematics
  • Dimensioni: 254 x 24 x 178 mm Ø 910 gr
  • Formato: Copertina rigida
  • Illustration Notes: 33 b/w illus. 140 exercises
  • Pagine Arabe: 416