home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

leordeanu marius - unsupervised learning in space and time

Unsupervised Learning in Space and Time A Modern Approach for Computer Vision using Graph-based Techniques and Deep Neural Networks




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
91,98 €
NICEPRICE
87,38 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 04/2021
Edizione: 1st ed. 2020





Trama

This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field.

Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts.

Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.

Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines. 






Sommario

1. Unsupervised Visual Learning: from Pixels to Seeing.- 2. Unsupervised Learning of Graph and Hypergraph Matching.- 3. Unsupervised Learning of Graph and Hypergraph Clustering.- 4. Feature Selection meets Unsupervised Learning.- 5. Unsupervised Learning of Object Segmentation in Video with Highly Probable Positive Features.- 6. Coupling Appearance and Motion: Unsupervised Clustering for Object Segmentation through Space and Time.- 7. Unsupervised Learning in Space and Time over Several Generations of Teacher and Student Networks.- 8. Unsupervised Learning Towards the Future.





Autore

Dr. Marius Leordeanu is an Associate Professor (Senior Lecturer) at the Computer Science & Engineering Department, Polytechnic University of Bucharest and a Senior Researcher at the Institute of Mathematics of the Romanian Academy (IMAR), Bucharest, Romania. In 2014, he was awarded the Grigore Moisil Prize, the most prestigious award in mathematics bestowed by the Romanian Academy, for his work on unsupervised learning.









i libri che interessano a chi ha i tuoi gusti





Altre Informazioni

ISBN:

9783030421304

Condizione: Nuovo
Collana: Advances in Computer Vision and Pattern Recognition
Dimensioni: 235 x 155 mm Ø 498 gr
Formato: Brossura
Illustration Notes:136 Illustrations, black and white
Pagine Arabe: 298
Pagine Romane: xxiii






Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Accetto tutti i cookie
X