home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

burkhardt charles e.; leventhal jacob j. - topics in atomic physics

Topics in Atomic Physics

;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2010
Edizione: Softcover reprint of hardcover 1st ed. 2006





Trama

The importance of the ?eld of atomic physics to modern technology cannot be overemphasized. Atomic physics served as a major impetus to the development of the quantum theory of matter in the early part of the twentieth century and, due to the availability of the laser as a laboratory tool, it has taken us into the twen- ?rst century with an abundance of new and exciting phenomena to understand. Our intention in writing this book is to provide a foundation for students to begin researchinmodernatomicphysics. Asthetitleimplies,itisnot,norwasitintended to be, an all-inclusive tome covering every aspect of atomic physics. Any specialized textbook necessarily re?ects the predilection of the authors toward certain aspects of the subject. This one is no exception. It re?ects our - lief that a thorough understanding of the unique properties of the hydrogen atom is essential to an understanding of atomic physics. It also re?ects our fasci- tion with the distinguished position that Mother Nature has bestowed on the pure Coulomb and Newtonian potentials, and thus hydrogen atoms and Keplerian - bits. Therefore, we have devoted a large portion of this book to the hydrogen atom toemphasizethisdistinctiveness. Weattempttostresstheuniquenessoftheattr- tive 1/r potential without delving into group theory. It is our belief that, once an understanding of the hydrogen atom is achieved, the properties of multielectron atoms can be understood as departures from hydrogenic properties.




Sommario

Background: Introduction.- The Bohr model of the atom.- Numerical values and the fine structure constant.- Atomic dimensions – is a reasonable atomic diameter? .- Localizing the electron: Is a point particle reasonable? .- The classical radius of the electron.- Atomic units.- Angular Momentum: Introduction.- Commutators.- Angular momentum raising and lowering operators.- Angular momentum commutation relations with vector operators.- Matrix elements of Vector operators.- Eigenfunctions of orbital angular momentum operators.- Spin.- Angular Momentum - Two Sources: Introduction.- Two sets of quantum numbers - uncoupled and coupled.- Vector model of angular momentum.- Examples of calculation of the Clebsch-Gordan coefficients.- Hyperfine splitting in the hydrogen atom.- The Quantum Mechanical Hydrogen Atom: The radial equation for a central potential.- Solution of the radial equation in spherical coordinates - the energy eigenvalues.- The accidental degeneracy of the hydrogen atom.- Solution of the hydrogen atom radial equation in spherical coordinates - the energy eigenfunctions.- The nature of the spherical eigenfunctions.- Separation of the Schrödinger equation in parabolic coordinates.- Solution of the separated equations in parabolic coordinates - the energy eigenvalues.- Solution of the separated equations in parabolic coordinates - the energy eigenfunctions.- The Classical Hydrogen Atom: Introduction.- The classical degeneracy.- Another constant of the motion - the Lenz vector.- The Lenz Vector and the Accidental Degeneracy: The Lenz vector in quantum mechanics.- Lenz vector ladder operators; conversion of a spherical eigenfunction into another spherical eigenfunction.- Application of the Lenz vector ladder operators to a general spherical eigenfunction.- A new set of angular momentum operators.- Energy eigenvalues.- Relations between the parabolic quantumnumbers.- Relationship between the spherical and parabolic eigenfunctions.- Additional symmetry considerations.- Breaking the Accidental Degeneracy: Introduction.- Relativistic correction for the electronic kinetic energy.- Spin-Orbit Correction.- The Darwin Term.- Evaluation of the terms that contribute to the fine-structure of hydrogen.- The total fine structure correction.- The Lamb shift.- Hyperfine structure.- The solution of the Dirac equation.- The Hydrogen Atom in External Fields: Introduction.- The Zeeman effect – the hydrogen atom in a constant magnetic field.- Weak electric field - the quantum mechanical Stark effect.- Weak electric field - the classical Stark effect.-The Helium Atom: Indistinguishable particles.- The total energy of the helium atom.- Evaluation of the ground state energy of the helium atom using perturbation theory.- The variational method.- Application of the variational principle to the ground state of helium.- Excited states of helium.- Doubly excited states of helium: autoionization.- Multielectron Atoms: Introduction.- Electron Configuration.- The designation of states - LS coupling.- The designation of states – jj coupling.- The Quantum Defect: Introduction.- Evaluation of the quantum defect.- Classical formulation of the quantum defect and the correspondence principle.- The connection between the quantum defect and the radial wave function.- Multielectron Atoms in External Fields: The Stark effect.- The Zeeman effect.- Interaction of Atoms with Radiation: Introduction.- Time dependence of the wave function.- Interaction of an atom with a sinusoidal electromagnetic field.- A two state system – the rotating wave approximation.- Stimulated absorption and stimulated emission.- Spontaneous emission.- Angular momentum selection rules.- Selection rules for hydrogen atoms.- Transitions in multi-electron atoms.-




Autore

Charles E. Burkhardt earned his Ph.D. in experimental atomic physics at Washington University in St. Louis in 1985. He is Professor of Physics at Florissant Valley Community College in St. Louis. Jacob J. Leventhal earned his Ph.D. in experimental atomic physics at the University of Florida in 1965. He is Curators' Professor at the University of Missouri – St. Louis. They have collaborated on experimental atomic physics since 1980, publishing numerous papers in research and teaching journals.











Altre Informazioni

ISBN:

9781441920683

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 468 gr
Formato: Brossura
Illustration Notes:XIV, 288 p. 75 illus.
Pagine Arabe: 288
Pagine Romane: xiv


Dicono di noi