Thermal Stress And Strain In Microelectronics Packaging - Lau John (Curatore) | Libro Springer 04/2012 -

home libri books ebook dvd e film top ten sconti 0 Carrello

Torna Indietro

lau john (curatore) - thermal stress and strain in microelectronics packaging

Thermal Stress and Strain in Microelectronics Packaging

Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.

194,98 €
185,23 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese


Pubblicazione: 04/2012
Edizione: Softcover reprint of the original 1st ed. 1993


Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat­ ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec­ tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.


1. Thermomechanics for Electronics Packaging.- 1.1 Introduction.- 1.2 Fundamental Equations of Thermoelasticity for Electronics Packaging.- 1.2.1 Assumptions.- 1.2.2 Fundamental Equations of Thermoelasticity.- 1.3 Governing Equations of Thermoelasticity for Electronics Packaging.- 1.3.1 Coupled Thermoelasticity.- 1.3.2 Coupled-Quasi-Static Thermoelasticity.- 1.3.3 Uncoupled-Quasi-Static Thermoelasticity.- 1.3.4 Theory of Isotropic Thermal Stresses.- 1.3.5 Temperature-Dependent Strain Energy Density.- 1.4 Boundary Value Problems for Electronics Packaging.- 1.5 Thermoelastic Example Problems for Electronics Packaging.- 1.5.1 Chip on a Semi-infinite Substrate.- 1.5.2 Chip on a Finite Substrate.- 1.6 Analysis of Stress.- 1.6.1 Three-dimensional Stress State.- 1.6.2 Two-dimensional Stress State.- 1.7 Analysis of Strain.- 1.7.1 Three-dimensional Strain State.- 1.7.2 Two-dimensional Strain State.- 1.8 Geometric Nonlinearity.- 1.8.1 Strain Components in Lagrangian Coordinates.- 1.8.2 Strain Components in Eulerian Coordinates.- 1.8.3 Large-Deflection Example Problem for Electronics Packaging.- 1.9 Material Nonlinearity.- 1.9.1 Hyperelasticity.- 1.9.2 Plasticity.- 1.9.3 Viscoelasticity.- 1.9.4 Viscoplasticity.- 1.9.5 Creep.- 1.10 Summary and Recommendations.- References.- 2. Thermal Expansivity and Thermal Stress in Multilayered Structures.- 2.1 Introduction.- 2.2 Analysis.- 2.3 Spreadsheet Calculation of Stress in N Layers.- 2.3.1 The Axisymmetric Assumption.- 2.4 Conclusion.- References.- 3. Thermal Stresses in Anisotropic Multilayered Structures.- 3.1 Introduction.- 3.2 Elasticity of an Orthotropic Layer Referred to the Global Coordinates of the Laminate.- 3.3 Thermal Stress Problem of a Rectangular Laminate.- 3.4 Stress Functions: Interface and Boundary Conditions.- 3.5 Generalized Plane Deformation of a Laminated Strip.- 3.6 The Principle of Complementary Virtual Work.- 3.7 Polynomial Approximations of the Stress Functions.- 3.8 Differential Equations and Boundary Conditions for the Coefficient Functions.- 3.9 Determination of the Deformation Parameters B, C, and O.- 3.10 Solution of the Eigenvalue Problem.- 3.11 Isotropic and Specially Orthotropic Laminates.- 3.12 Thermal Stress in the Vicinity of a Curved Free Edge.- 3.13 Layered Beams.- 3.14 Refinement and Regression of the Polynomial Approximation.- 3.15 Measures of the Criticality of the Interlaminar Stresses.- 3.16 Examples: Three-Layer Anisotropic Laminates and Isotropic Beams.- 3.17 Concluding Remarks.- Nomenclature.- Appendix 3A.- References.- 4. Transient Thermal Stresses in Multilayered Devices.- 4.1 Introduction.- 4.2 Transient Heat Transfer Solutions.- 4.3 Variational Principle for the Thermoelasticity Problem.- 4.4 Asymptotic Thermal Stress Distribution Near Free Edge.- 4.4.1 Homogeneous Asymptotic Solution.- 4.4.2 Particular Asymptotic Solution.- 4.5 Formulations of Hybrid Singular Element.- 4.5.1 Formulation.- 4.5.2 Verification of the Special Hybrid Element.- 4.6 Green’s Function Integration Method.- 4.7 Transient Behaviors of Multilayered Devices.- 4.8 Design Based on Transient Thermal Stresses.- 4.8.1 Crack Initiation.- 4.8.2 Thermal Fatigue.- 4.9 Discussion and Summary.- References.- 5. Temperature Dependence of Thermal Expansion of Materials for Electronics Packages.- 5.1 Introduction.- 5.2 Theory.- 5.3 Experimental.- 5.4 Results and Discussion.- 5.4.1 Ceramics.- 5.4.2 Metals.- 5.4.3 Sandwiches (Cu-Invar-Cu and Cu-Mo-Cu).- 5.4.4 Organic Boards and Packages.- 5.5 Summary.- References.- 6. Thermal Stress Considerations in Die-Attachment.- 6.1 Introduction.- 6.2 Properties of Die-Attach Materials for Various Applications.- 6.3 Analytical Consideration of Thermal Stresses in Die-Attach.- 6.3.1 Timoshenko and Other Models.- 6.3.2 Calculation of Maximum Die Stress.- 6.3.3 Suhir’s Model.- 6.3.4 Numerical Calculation of Die Stress.- 6.4 Die Stress Measurement.- 6.4.1 Piezoresistive Stress Sensors.- 6.4.2 Fractional Fringe Moiré Interferometry.- 6.5 Quality of Die-Attach (Effect of Voids) and Relationship to Die Stress.- 6.5.1 Voids and Die Stress.- 6.5.2 Nondestructive Determination of Die-Attach Quality.- 6.5.3 Methods of Improving Die-Attach Quality.- 6.6 Conclusion.- Nomenclature.- References.- 7. Die Stress Measurement Using Piezoresistive Stress Sensors.- 7.1 Introduction.- 7.2 Theory of Piezoresistive Sensors.- 7.2.1 Background.- 7.2.2 Phenomenological Theory.- 7.2.3 Theory of the Piezoresistive Coefficients.- 7.3 Experimental Measurements of Piezoresistive Coefficients.- 7.4 Stress Sensor Geometries.- 7.5 Experimental Designs and Calibration.- 7.5.1 Chip Layout.- 7.5.2 Calibration.- 7.6 Experimental Stress Measurements.- 7.7 Summary.- References.- 8. Analysis of the Thermal Loading on Electronics Packages by Enhanced Moiré Interferometry.- 8.1 Introduction.- 8.1.1 Displacement Measurements.- 8.2 Essentials of Moiré Interferometry.- 8.2.1 Specimen Grating.- 8.2.2 Moiré Interferometry.- 8.3 Digital Image Analysis Enhanced Moiré Interferometry.- 8.3.1 Mechanism of Fringe Formation.- 8.3.2 Fractional Fringe Analysis.- 8.3.3 Digital Image Processing.- 8.4 Full-Field Analysis of Thermally Induced Deformations.- 8.4.1 Thermal Strain Measurements in IC-Packages.- 8.4.2 Effect of Conformal Coating on Strain Relief in Packages.- 8.5 Conclusions and Future Trends.- References.- 9. Correlation of Analytical and Experimental Approaches to Determination of Thermally Induced Printed Wiring Board (PWB) Warpage.- 9.1 Introduction.- 9.2 Finite Element Analysis for PWB Warpage.- 9.2.1 PWB Geometric Configurations.- 9.2.2 Modeling Assumptions and Techniques.- 9.2.3 Sensitivity Analysis for Mechanical Properties.- 9.2.4 Mechanical Property Measurements.- 9.2.5 Discussion of Analytical Results.- 9.3 Experimental Verification of PWB Warpage.- 9.3.1 Overview of Experimental Technique — Shadow Moiré.- 9.3.2 Sample Preparation.- 9.3.3 Experimental Setup.- 9.3.4 Experimental Procedures.- 9.3.5 Comparison of Experimental and Analytical Results.- 9.3.6 Implications and Ramifications.- 9.4 Conclusions.- References.- 10. Thermal Stress-Induced Open-Circuit Failure in Microelectronics Thin-Film Metallizations.- 10.1 Introduction.- 10.2 Thermodynamics of Stressed Solids.- 10.3 A Stress-Induced Diffusion Failure Model.- 10.4 Discussion of Experimental Results of Isothermal Aging.- 10.4.1 Temperature Effect.- 10.4.2 Line Width Effect.- 10.4.3 Line Thickness Effect.- 10.4.4 Passivation Effect.- 10.5 Failure of Interconnects Under Thermal Fatigue.- 10.5.1 Sample Preparation.- 10.5.2 Testing and Results.- 10.5.3 Comparison of Experiment and Theoretical Prediction.- 10.6 Summary.- Appendix 10A.- Nomenclature.- References.- 11. Thermal Stress and Stress-Induced Voiding in Passivated Narrow Line Metallizations on Ceramic Substrates.- 11.1 Introduction.- 11.2 Measurement of Stresses in Metallizations.- 11.2.1 Wafer Curvature Methods.- 11.2.2 X-Ray Diffraction Stress Measurement.- 11.3 Estimation of Thermal Stresses in Passivated Line Metallizations.- 11.3.1 Eshelby Theory of Inclusions.- 11.3.2 Reduction to Two-Dimensional Problem.- 11.3.3 The Problem of the Heterogeneous Inclusion.- 11.3.4 The Effects of Finite Passivation.- 11.4 Stress Relaxation and Void Formation.- 11.4.1 Stresses After Redistribution.- 11.4.2 Void Nucleation.- 11.4.3 Stress Relaxation by Void Growth.- 11.5 Summary.- References.- 12. Predicted Bow of Plastic Packages of Integrated Circuit (IC) Devices.- 12.1 Introduction.- 12.2 Thin Plastic Package.- 12.2.1 Basic Equations.- 12.2.2 Curvature.- 12.2.3 Maximum Bow.- 12.2.4 Zero Bow Condition.- 12.2.5 Special Case: Bimaterial Assembly.- 12.2.6 Numerical Examples and Discussion.- 12.3 Large Plastic Package.- 12.3.1 Basic Equations.- 12.3.2 Deflection Surface.- 12.3.3 Special Cases.- 12.3.4 Numerical Examples.- 12.3.5 Approximate Formula for Maximum Bow.- 12.4 Summary.- Nomenclature.- References.- 13. Thermal and Moisture Stresses in Plastic Packages.- 13.1 Introduction.- 13.2 Plastic Package Structure and Fa

i libri che interessano a chi ha i tuoi gusti

Altre Informazioni



Condizione: Nuovo
Dimensioni: 229 x 152 mm Ø 1305 gr
Formato: Brossura
Illustration Notes:466 Illustrations, black and white
Pagine Arabe: 884
Pagine Romane: xxiv

Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.