home libri books Fumetti ebook dvd top ten sconti 0 Carrello

Torna Indietro

kabe alvar m.; sako brian - structural dynamics fundamentals and advanced applications, volume i

Structural Dynamics Fundamentals and Advanced Applications, Volume I Volume I


Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.

197,98 €
188,08 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese
Pubblicazione: 06/2020

Note Editore

The two-volume work, Structural Dynamics Fundamentals and Advanced Applications, is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. Volume I covers Newton's Laws, single-degree-of-freedom systems, damping, transfer and frequency response functions, transient vibration analysis (frequency and time domain), multi-degree-of-freedom systems, forced vibration of single and multi-degree-of-freedom systems, numerical methods for solving for the responses of single and multi-degree-of-freedom systems, and symmetric and non-symmetric eigenvalue problems. In addition, a thorough discussion of real and complex modes, and the conditions that lead to each is included. Stochastic methods for single and multi-degree-of-freedom systems excited by random forces or base motion are also covered.

Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems.

  • The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind
  • Derivations are rigorous and comprehensive, thus making understanding the material easier
  • Presents analysis methodologies adopted by the aerospace community to solve extremely complex structural dynamics problems


1. Structural Dynamics 2. Single-Degree-of-Freedom Systems 3. Transfer and Frequency Response Functions 4. Damping 5. Transient Excitation 6. Multi-Degree-of-Freedom Systems 7. Forced Vibration Multi-Degree-of-Freedom Systems 8. Numerical Methods


Dr. Alvar M. Kabe is the Principal Director of the Structural Mechanics Subdivision of The Aerospace Corporation. His prior experience includes Director of the Structural Dynamics Department and Manager of the Flight Loads Section at The Aerospace Corporation. Dr. Kabe has made fundamental contributions to the state of the art of launch vehicle and spacecraft structural dynamics. He introduced the concept of multishaker correlated random excitation to better isolate modes for measurement in mode survey tests, and the concept of using the superposition of scaled frequency response functions to isolate modes for identi?cation. He then introduced the concept of using structural connectivity information as additional constraints when optimally adjusting dynamic models to better match test data; this work has been cited over 260 times in other publications. Dr. Kabe developed the atmospheric ?ight turbulence/gust and time domain buffet loads analysis methodologies used on several operational launch vehicle programs, and he pioneered the concept of using structural dynamic models to compute atmospheric ?ight static-aeroelastic loads. Dr. Kabe led the development of a continually evolving integrated dynamics analysis system that has been used for over two decades to compute loads on over two dozen launch vehicle systems and their payloads. The work included independently developing and implementing analysis methodologies, developing loads and stress analysis models, computing loads, and establishing structural margins. This also included independent day-of-launch placard analyses and independent go/no-go launch recommendations. Dr. Kabe has led, co-chaired, or participated on numerous high level reviews and assessment teams that have had signi?cant impact. He was a member of the Defense Science Board's Aviation Safety Task Force, and he co-chaired four U.S. Air Force Titan IV Independent Readiness Reviews. He led the Space Shuttle Radar Topography Mission assessment, and he co-chaired NASA's Mars Sample Return project review. In addition, Dr. Kabe is on the NASA Engineering Safety Center (NESC) Structural Dynamics Technical Discipline Team as a subject matter expert. Dr. Kabe has published 23 technical papers, and written over 150 corporate technical reports. He has taught undergraduate and graduate structural dynamics classes, presented invited seminars at major universities, and the Keynote at an AIAA Structural Dynamics Specialist Conference. Dr. Kabe has received numerous awards and over forty letters of commendation. The awards include the Trustees Distinguished Achievement Award, The Aerospace Corporation's highest award, The Aerospace Corporation's President's Award, Division and Group Achievement Awards, and nine Program Recognition Awards. Dr. Kabe is a Registered Professional Engineer in the state of California; and his B.S., M.S., and Ph.D. degrees are from UCLA.
Dr. Brian H. Sako is a Distinguished Scientist in the Structural Mechanics Subdivision of The Aerospace Corporation. Prior to this position, Dr. Sako was an Engineering Specialist, a Senior Engineering Specialist, and an Aerospace Fellow. Dr. Sako has made signi?cant contributions to the ?elds of structural dynamics, numerical analysis, and time series data analysis. His development of the ?ltering approach used to separate the more rapidly varying wind features from more slowly varying components is used on several launch vehicle programs to develop turbulence forcing functions for atmospheric ?ight loads analysis. Dr. Sako also developed an approach to remove tones from wind tunnel buffet test data; the approach was used, for example, on NASA's Space Launch System (SLS) program. His developments have also made signi?cant contributions to the assessment of the internal dynamic properties of rocket engines, pogo stability of launch vehicles, and the development of forcing functions for loads analysis. Dr. Sako developed state-of-the-art time series analysis and mode parameter identi?cation tools that have been used to analyze data and identify structural dynamic parameters on numerous operational systems. The time series data analysis tool is used to assess ?ight and ground vibration test data. The mode parameter identi?cation tool is used to extract mode parameters from launch vehicle and satellite mode survey test data, as well as ?ight data. Dr. Sako's developments are used routinely to assess data from operational launch and space systems. Dr. Sako has published 25 technical papers, and written 100 corporate technical reports. He has taught graduate classes in numerical analysis, engineering mathematics, and signal processing. Dr. Sako has earned numerous awards and letters of commendation, including The Aerospace Corporation's President's Award, Division and Group Achievement Awards, and several Program Recognition Awards. Dr. Sako's B.A. and M.A. degrees are from the University of Hawaii, and his Ph.D. is from UCLA.

Altre Informazioni



Condizione: Nuovo
Dimensioni: 235 x 191 mm
Formato: Copertina rigida
Illustration Notes:Approx. 280 illustrations
Pagine Arabe: 928

Dicono di noi