home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > BIOLOGIA > BIOLOGIA > ECOLOGIA

murawski steven a. (curatore); ainsworth cameron h. (curatore); gilbert sherryl (curatore); hollander david j. (curatore); paris claire b. (curatore); schlüter michael (curatore); wetzel dana l. (curatore) - scenarios and responses to future deep oil spills

Scenarios and Responses to Future Deep Oil Spills Fighting the Next War

; ; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
97,98 €
NICEPRICE
93,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2020
Edizione: 1st ed. 2020





Trama

It has often been said that generals prepare for the next war by re-fighting the last.  The Deepwater Horizon (DWH) oil spill was unlike any previous – an underwater well blowout 1,500 meters deep.  Much has been learned in the wake of DWH and these lessons should in turn be applied to both similar oil spill scenarios and those arising from “frontier” explorations by the marine oil industry.  The next deep oil well blowout may be at 3,000 meters or even deeper.  This volume summarizes regional (Gulf of Mexico) and global megatrends in marine oil exploration and production.  Research in a number of key areas including the behavior of oil and gas under extreme pressure, impacts on biological resources of the deep sea, and the fate of oil and gas released in spills is synthesized.  A number of deep oil spills are simulated with detailed computer models, and the likely effects of the spills and potential mitigation measures used to combat them are compared.  Recommended changes in policies governing marine oil exploration and development are proposed, as well as additional research to close critical and emerging knowledge gaps.  This volume synthesizes state-of-the-art research in deep oil spill behavior and response.   It is thus relevant for government and industry oil spill responders, policy formulators and implementers, and academics and students desiring an in-depth and balanced overview of key issues and uncertainties surrounding the quest for deep oil and potential impacts on the environment.




Sommario

Section 1. Ecosystem Modeling

 

Modeling the impacts of DWH and IXTOC-I using Atlantis to understand cross-trophic level

impacts. Understanding community change and effects of multiple simultaneous stressors

including fishing and longer-term climate variability.

 

Section 2. Future Scenarios

 

In this section, a realistic suite of potential future deep spills, based on current and projected

regions of oil drilling, will be selected and analyzed. These scenarios will consist of

combinations of different locations (e.g., west, east and southern Gulf of Mexico), with differing

oil types and sub-surface oceanography. A number of papers in this section will consider

differing physics and chemistry of the blowout, surface and sub-surface distribution predictions

and degradation of oil, potentials for formation of oiled marine snow, and biological impacts.

 

Section 3. Evaluating Response Techniques for Future Spills

 

What scientific questions to responders need to have answered? How did various response

techniques (burning, booming, surface and sub-surface dispersant application, sand berms,

freshwater flooding, direct surface and sub-surface collection) work, and how can these

techniques be improved and optimized for systematic application? What would responders do

differently in future blowout scenarios? Can these studies add anything to the Net

Environmental Benefit Analysis performed by and necessary for the industry and response

communities?

 

Section 4. Summary

 

What we know now that we did not know then (e.g., DWH), what are the new paradigms, how

we might respond differently, unresolved and unanswered scientific questions, thoughts on

policy changes and appropriate regulatory requirements on the industry. “Lessons learned”

from previous deep spills and ensuing research.

.





Autore

Steven A. Murawski is a Professor and Downtown Partnership/Peter Betzer Endowed Chair of Biological Oceanography at the University of South Florida.  Murawski currently serves as director of the C-IMAGE consortium conducting interdisciplinary oil-spill related research.  Prior to his current position, he was Director of Scientific Programs and Chief Science Advisor for the US National Marine Fisheries Service.  He is a fishery biologist with interests in population and ecosystem ecology and dynamics.  He has published nearly 200 journal articles, technical reports and book chapters.  Awards include the Department of Commerce Gold Medal.  His Ph.D. is in Wildlife and Fisheries Biology from the University of Massachusetts-Amherst.

Cameron H. Ainsworth is an Associate Professor of Fisheries Science at the University of South Florida.  He uses ‘end-to-end’ models and other means to study anthropogenic influences on marine ecosystems.  His recent work has considered fishing, climate change and oil spills as drivers of ecosystem change.  He keeps an applied focus, working with NOAA and state fisheries managers on common research themes and serving as a member of the Ecosystem Science and Statistical Committee of the Gulf of Mexico Fisheries Management Council.  He has published over 100 peer-reviewed and technical articles.  Awards include a Sloan Research Fellowship for early career scientists and an Outstanding Faculty Award.  His Ph.D. is in Resource Management and Environmental Studies from the University of British Columbia in Vancouver, Canada.

Sherryl Gilbert is the assistant director of the C-IMAGE consortium operated at the College of Marine Science at the University of South Florida.  Gilbert has served as the center’s operational core since 2011, coordinating research and management efforts.  Prior to 2011, Gilbert was the technical director of the Ocean Modeling and Prediction Laboratory and was heavily involved in ocean sensor development, testing, and its application to study coastal processes. She is a physical oceanographer with broader interests in Gulf conservation efforts.  Ms. Gilbert holds a M.S. in Marine Science from the University of South Florida.

David J. Hollander is a Professor of Chemical Oceanography and Sedimentary Geochemistry at the University of South Florida. Hollander currently serves as the Chief Science Officer developing and overseeing the wide scope of interdisciplinary scientific activities conducted by C-IMAGE. Since the Deepwater Horizon Blowout event in 2010, he has played a critical role in scientific discovery, public communications of findings, and influencing the research, response efforts and policies of federal agencies. He is an isotope and molecular organic geochemist focusing on climate, environment and ecosystem changes at both natural and anthropogenic time-scales.  He has over 100 peer-reviewed paper and received his Ph.D. from the Swiss Federal Institute of Technology (ETH-Zurich).

Claire B. Paris-Limouzy is a Professor of Ocean Sciences at the Rosenstiel School of Marine and Atmospheric Sciences. Paris is a PI for the C-IMAGE consortium, leading oil-spill modeling research. She is a biological oceanographer with interests in larval ecology and biophysical interactions. She has over 170 publications, including the probabilistic open-source Connectivity Modeling System used worldwide to predict dispersion and population connectivity and in NOAA fisheries stock assessment. She is President-Elect of the Early Life History section of the American Fishery Society and the 2018 AGU Rachel Carson Lecturer.  Paris is interdisciplinary at heart with a Ph.D. is in Coastal Oceanography from the State University of New York at Stony Brook.

Michael Schlüter owns the Chair of ‘Fluid Mechanics for Multiphase Systems’ at the Hamburg University of Technology and is head of the Institute of Multiphase Flows. He also serves as coordinator of the DFG Priority Program “Reactive Bubble Columns“ and as President of the Working Party on “Multiphase Fluid Flow“ in the European Federation of Chemical Engineering. His research interest is primarily in the field of multiscale transport phenomena in chemical and bioprocess engineering, reactor development, design and scale-up. He has published over 50 papers and completed work on more than 15 books.

Dana L. Wetzel is a Senior Scientist, Program Manager of the Environmental Laboratory for Forensics, and Eminent Scholar at Mote Marine Laboratory.  Her research focuses on sublethal effects of chemical contaminant exposure on essential biochemical processes in marine organisms from corals to polar bears. Wetzel has served on panels to develop and assess protocols for oil spill response research










Altre Informazioni

ISBN:

9783030129651

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 842 gr
Formato: Brossura
Illustration Notes:XII, 542 p. 167 illus., 138 illus. in color.
Pagine Arabe: 542
Pagine Romane: xii


Dicono di noi