home libri books Fumetti ebook dvd top ten sconti 0 Carrello


pennec xavier (curatore); sommer stefan (curatore); fletcher tom (curatore) - riemannian geometric statistics in medical image analysis

Riemannian Geometric Statistics in Medical Image Analysis

; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
109,98 €
NICEPRICE
104,48 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 09/2019





Note Editore

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data.

Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods.

Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology

Content includes:

  • The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs
  • Applications of statistics on manifolds and shape spaces in medical image computing
  • Diffeomorphic deformations and their applications

As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science.



  • A complete reference covering both the foundations and state-of-the-art methods
  • Edited and authored by leading researchers in the field
  • Contains theory, examples, applications, and algorithms
  • Gives an overview of current research challenges and future applications




Sommario

Part 1 Foundations of geometric statistics 1. Introduction to differential and Riemannian geometry 2. Statistics on manifolds 3. Manifold-valued image processing with SPD matrices 4. Riemannian geometry on shapes and diffeomorphisms 5. Beyond Riemannian geometry

Part 2 Statistics on manifolds and shape spaces 6. Object shape representation via skeletal models (s-reps) and statistical analysis 7. Efficient recursive estimation of the Riemannian barycenter on the hypersphere and the special orthogonal group with applications 8. Statistics on stratified spaces 9. Bias on estimation in quotient space and correction methods 10. Probabilistic approaches to geometric statistics 11. On shape analysis of functional data

Part 3 Deformations, diffeomorphisms and their applications 12. Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles 13. A discretize-optimize approach for LDDMM registration 14. Spatially adaptive metrics for diffeomorphic image matching in LDDMM 15. Low-dimensional shape analysis in the space of diffeomorphisms 16. Diffeomorphic density registration





Autore

Xavier Pennec's research interest is at the intersection of statistics, differential geometry, computer science and medicine. He is particularly interested in the mathematics involved in computational anatomy: geometric statistics involving statistical computing on Riemannian manifolds and other geometric structures . He has contributed mathematically grounded methods and algorithms for medical image registration, statistics on shapes, and their translation to clinical research applications.
Stefan Sommer's research focus is on modeling and statistics of non-linear data with application to shape spaces, functional data analysis, and image registration. This includes foundational and algorithmic aspects of statistics on manifold valued data, and computational modeling and statistical analysis of deformations occurring in computational anatomy.
Tom Fletcher's research focus is on solving problems in medical image analysis and computer vision through the combination of statistics and differential geometry










Altre Informazioni

ISBN:

9780128147252

Condizione: Nuovo
Dimensioni: 235 x 191 mm
Formato: Brossura
Pagine Arabe: 636


Dicono di noi