home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

boustani ihsan - molecular modelling and synthesis of nanomaterials

Molecular Modelling and Synthesis of Nanomaterials Applications in Carbon- and Boron-based Nanotechnology




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
162,98 €
NICEPRICE
154,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2021
Edizione: 1st ed. 2020





Trama

This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of atoms. The book continues with a discussion of atomic clusters and nanostructures, focusing primarily on boron and carbon, exploring, in detail, the one-, two-, and three-dimensional structures of boron and carbon, and describing their myriad potential applications in nanotechnology, from nanocoating and nanosensing to nanobatteries with high borophene capacity. The broad discussion of computational modelling as well as the specific applications to boron and carbon, make this book an essential reference resource for materials scientists in this field of research.




Sommario

Foreword
Preface
I Molecular Modelling & Magic Clusters
1. Molecular Modelling
1.1. Concepts of Molecular Modelling
1.1.1. Areas of Molecular Modelling
1.1.2. The Basics of Molecular Modelling
1.2. Molecular Mechanics
1.2.1. Force Field Equation
1.2.2. Minimization Procedure
1.2.3. Optimization Methods
1.2.4. Gradient Methods
1.2.5. General Newton-Raphson Method
1.3. Molecular Dynamics
1.3.1. Trajectory and Equation of Motion
1.3.2. Initialization of Positions and Velocities
1.3.3. Verlet Algorithm
1.3.4. Leap-Frog Algorithm
1.4. Ab Initio Quantum Chemical Methods
1.4.1. Some Basics of Quantum Mechanics
1.4.2. The Hamiltonian
1.4.3. Time-dependent Schrödinger Equation
1.4.4. Hartree-Fock Theory
1.4.5. Post Hartree-Fock
1.5. Density Functional Theory
1.5.1. Kohn-Sham Equations
1.5.2. Local (Spin) Density Approximation
1.5.3. Non-Local Density-Gradient Corrections
1.5.4. Hybrid Functionals
1.5.5. Chemistry Software
2. Magic Numbers & Clusters
2.1. Atomic Clusters and Magic Numbers
2.2. What are Orbitals and Shells
2.2.1. The Structure of Atom
2.2.2. Shell Structure of Nucleons
2.2.3. Shell Structure of Condensed Clusters
2.2.4. Shell Structure of Hollow Clusters
2.3. Magic Numbers in Nature
2.3.1. Magic Numbers of Electron Shells
2.3.2. Magic Numbers of Nuclear Shells
2.3.3. Magic Electronic Shells of Clusters
2.3.4. Magic Filled Shells of Clusters
2.3.5. Magic Hollow Shells of Clusters
2.3.6. Magnetic Shells of Electrons
3. Alkali Metal Clusters
3.1. Alkali Metals
3.2. Lithium Metal Clusters
3.2.1. Production of Metal Clusters
3.2.2. Lithium Atom
3.2.3. Lithium Clusters
3.2.4. Experimental Evidence
3.2.5. Lin Clusters For n = 6
3.2.6. Lin Clusters For n = 14
3.2.7. Lin Clusters For n = 20
3.2.8. Lin Clusters For n = 26
3.3. Sodium Metal Clusters
3.3.1. Sodium Atom
3.3.2. Sodium Clusters
3.3.3. First Study on Small Na Clusters
3.3.4. Electronic Shells of Na Clusters
3.3.5. Jellium Model for Na Clusters
3.3.6. Mass Spectra of Na Clusters
3.4. Geometrical Structures of Nan Clusters
3.4.1. Nan Clusters for n =7
3.4.2. The Structure of the Magic Cluster Na8
3.4.3. Raman Spectra of the Magic Cluster Na8
3.4.4. Basics of Photoabsorption
3.4.5. Nan Clusters for 3=n=8
3.4.6. Nan Clusters for 9=n=14
3.4.7. Nan Clusters for 13=n=380
II The p-Block Non-Metal Clusters
4. The Element Boron
4.0.1. History of Boron
4.0.2. Energetic Boron
4.0.3. Boron Materials
4.0.4. Chemistry of Boron
4.1. Icosahedral-Based Crystalline Boron
4.1.1. First Crystalline
4.1.2. Rhombohedral Boron
4.1.3. Orthorhombic & Tetragonal Boron
4.2. Non-icosahedral Boron Clusters Bn (2 = n = 14)
4.2.1. Small Boron clusters
4.2.2. Prediction of Planarity & Aufbau Principle
4.2.3. Theoretical Confirmations
4.2.4. Experimental Confirmations
4.2.5. Hydrocarbon and Boron Clusters
4.2.6. Coulomb Explosion
4.3. Neutral and Charged Boron Clusters Bn (n = 40)
4.3.1. Boron Clusters Bn (15 = n = 25)
4.3.2. Boron Clusters Bn (26 = n = 36)
4.3.3. Boron Clusters Bn (37 = n = 40)
4.4. The Largest Predicted Quasi-Planar Cluster B84
5. The Element Carbon
5.0.1. History of Carbon
5.0.2. Chemistry of Carbon
5.0.3. Carbon Allotrope
5.1. Carbon Clusters
5.1.1. Mass Spectra of Carbon Clusters
5.1.2. Small Carbon Clusters Cn (2 = n = 10)
5.1.3. Small Carbon Clusters Cn (12 = n = 32)
III Modelling of Nanostructures
6. Two-Dimensional Sheets
6.1. Boron-Based Nano-Sheets (BNSs)
6.1.1. What is Nano ?
6.1.2. What is Nano-Structure ?
6.1.3. The "Aufbau Principle" & Nano-Sheets
6.1.4. The First Boron Nano-Sheet
6.1.5. Prediction of BNSs via Theory
6.1.6. BNSs on Substrates via Theory
6.2. Confirmation of BNSs via Experiment
6.2.1. Synthesis of Ultra-Thin BNSs
6.2.2. Synthesis of Amorphous BNSs
6.2.3. Synthesis of Buckled BNSs
6.2.4. Synthesis of g-B28-Sheets
6.2.5. Synthesis of b12-Sheets (g-Sheets)
6.3. Carbon-Based Nano-Sheets (CNSs)
6.3.1. Graphene : The Atom-Thick Sheet
6.3.2. Graphene Derivatives
6.3.3. Synthesis of Graphene
6.3.4. Quantum Hall-Effect of Graphene
6.3.5. Graphene Nanoribbons
6.3.6. Half-Metals & Electric Field
6.3.7. Halfmetallicity by Chemical Modification
7. One-Dimensional Nanotubes
7.1. Boron-Based Nanotubes (BNTs)
7.1.1. Prediction of BNTs via Theory
7.1.2. Armchair and Zigzag Boron Nanotubes
7.1.3. Electronic and Elastic Properties of BNTs
7.1.4. Prediction Double-Walled BNTs via Theory
7.2. Confirmation of BNTs via Experiment
7.2.1. Synthesis of SWBNTs
7.2.2. Synthesis of DWBNTs via CVD
7.2.3. Synthesis of MWBNTs via CVD
7.2.4. Synthesis of MWBNTs via ThEM
7.3. Carbon-Based Nanotubes (CNTs)
7.3.1. Synthesis of CNTs
7.3.2. CNTs Versus BNTs
7.3.3. Carbon Nanocones
7.3.4. Growth of MWCNTs
7.3.5. Functionalization of CNTs
7.3.6. Cholestrol@CNTs
7.3.7. Mechanical Properties of CNTs
7.3.8. Young’s Modulus of SWCNTs
7.3.9. Bending Modulus of MWCNTs
7.3.10. Wall Defects in CNTs
7.3.11. Electrical Conductivity of CNTs
7.3.12. X- & Y-Junctions in CNTs
7.3.13. Buckling in CNTs
8. Three-Dimensional Fullerenes
8.1. Boron-Based Fullerenes
8.1.1. Boron-Hydride Fullerenes
8.1.2. Bare Boron Fullerenes
8.1.3. The 24n2 and 32n2 a-Boron Cages
8.1.4. Unusually Highly Stable B100 Fullerenes
8.1.5. The (32 + 8k) Family of Boron Fullerenes
8.1.6. The 60n2 Family of B60 Fullerenes
8.1.7. The 80n2 Family of B80 Fullerenes
8.1.8. Condensed Boron Fullerenes
8.1.9. The Electron Counting Rules of Fullerenes
8.1.10. Synthesis Smallest Boron Fullerene B40
8.2. Carbon-Based Fullerenes
8.2.1. Short History of Fullerenes
8.2.2. Synthesis of C60 Fullerene
8.2.3. Fullerene Cages
8.2.4. Goldberg’s Series of Polyhedra
8.2.5. Solid Forms of C60 Fullerene
8.2.6. Deposition of C60 Fullerenes on Graphene
8.2.7. Cluster Forms of (C60)n Fullerene
IV Potential Application in Nanotechnology
9. Nano Battery
9.1. What is a Battery
9.2. Basis of a Battery
9.3. Lithium Ion battery
9.4. Graphene-Based Nano Battery
9.5. Dendritic lithium and Battery Fires
9.6. Borophene-Based Nano Battery
10. Nanosensors and Fullerens
10.1. Nano@Sensors
10.2. Carbon-Based Nano-Sensors
10.2.1. CNT Ethanol Nano-Sensors
10.2.2. CNT Oxygen Nano-Sensors
10.2.3. CNT Mechanical Nano-Sensors
10.2.4. CNT Nanomechanical Mass-Sensors
10.2.5. CNT & Graphene NH3 Nano-Sensors
10.2.6. Gra










Altre Informazioni

ISBN:

9783030327286

Condizione: Nuovo
Collana: Springer Series in Materials Science
Dimensioni: 235 x 155 mm Ø 920 gr
Formato: Brossura
Illustration Notes:XIII, 594 p. 538 illus., 392 illus. in color.
Pagine Arabe: 594
Pagine Romane: xiii


Dicono di noi