home libri books Fumetti ebook dvd top ten sconti 0 Carrello

Torna Indietro

sid m. becker (curatore); andrey v. kuznetsov (curatore); filippo de monte (curatore); giuseppe pontrelli (curatore); dan zhao (curatore) - modeling of mass transport processes in biological media

Modeling of Mass Transport Processes in Biological Media

; ; ; ;

Disponibilità: Non disponibile o esaurito presso l'editore

340,98 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese
Pubblicazione: 08/2022

Note Editore

Modeling of Mass Transport Processes in Biological Media focuses on applications of mass transfer relevant to biomedical processes and technology-fields that require quantitative mechanistic descriptions of the delivery of molecules and drugs. This book features recent advances and developments in biomedical therapies with a focus on the associated theoretical and mathematical techniques necessary to predict mass transfer in biological systems.

The book is authored by over 50 established researchers who are internationally recognized as leaders in their fields. Each chapter contains a comprehensive introductory section for those new to the field, followed by recent modeling developments motivated by empirical experimental observation. Offering a unique opportunity for the reader to access recent developments from technical, theoretical, and engineering perspectives, this book is ideal for graduate and postdoctoral researchers in academia as well as experienced researchers in biomedical industries.


1. Applications of Porous Media in Biological Transport Modeling 2. Metabolic Consumption of Microorganisms 3. Numerical simulation of deformability cytometry - transport of a biological cell through a micro?uidic channel 4. Modeling age density and mean age distributions of organelles in an axon - Application to neuropeptide transport 5. A Continuum Model of Drug Transport to Multiple-Cell-Type Population 6. Computational investigation of the role of low-density lipoprotein and oxygen transport in atherosclerotic arteries 7. Fluid dynamics and mass transport in lower limb vessels: effects on restenosis 8. Numerical modeling in support of locoregional drug delivery during transarterial therapies for liver cancer 9. Active Gel: a Continuum Physics Perspective 10. Modeling Nasal Spray Droplet Deposition and Translocation in Nasal Airway for Olfactory Delivery 11. Drug delivery and in vivo absorption 12. Modeling the physiological phenomena and the effects of therapy on the dynamics of tumor growth 13. Mathematical models of water transport across ocular epithelial layers 14. Multidimensional modeling of solid tumor proliferation following drug treatment 15. Modeling LDL accumulation within an arterial wall 16. Modeling Transport of Soluble Proteins and Metabolites in the Brain 17. Hybrid dimensional models for mass transport processes 18. Chemical Thermodynamic Principles and Computational Modeling of NOX2-Mediated ROS Production on Cell Membrane


Sid Becker is an Associate Professor in the Department of Mechanical Engineering at the University of Canterbury. He is an Alexander von Humboldt Fellow and is a recipient of the Royal Society of New Zealand Marsden Grant. He has held academic positions in Germany, the United States, and New Zealand. His research is primarily in computational and analytical modelling of heat and mass transfer processes in biological media. Dr. Becker is also the editor of the book Modeling of Microscale Transport in Biological Processes (2017) and co-editor of the books Heat Transfer and Fluid Flow in Biological Processes (2015), and Transport in Biological Media (2013).
Dr. Kuznetsov is Professor at the Department of Mechanical & Aerospace Engineering at North Carolina State University. He holds a joint professorial position at the University of North Carolina's Biomedical Engineering Department. He is a Fellow of American Society of Mechanical Engineering, an Editorial Board Member of the Proceeding of the Royal Society A, and an Associate Editor of the Journal of Porous Media. He is a recipient of the prestigious Humboldt Research Award. In 2014, Dr. Kuznetsov was elected as a Member of the Scientific Council of the International Center of Heat and Mass Transfer. He has published more than 400 journal papers, 17 book chapters, 3 books, and 100 conference papers. His works have been cited over 12,000 times: he has an h-index of 51 and an i-10 index of over 220. While his most notable early contributions are in the development of the field of porous media, Prof. Kuznetsov's research interests in the general area of numerical modeling are extensive, including transport in living tissues, sub-cellular transport, mass transport in neurons and axons, bioheat transport, bioconvective sedimentation, fluid mechanics, flows in microgravity, and turbulence.
Dr. de Monte is a Professor of Mechanical Engineering at University of L'Aquila, Italy. He served as a full-time Visiting Ph.D. student at the Department of Engineering, University of Cambridge, UK, in 1992, and a seasonal Visiting Associate Professor at the Department of Mechanical Engineering, Michigan State University, USA, in 2007 up to 2014. Also, he is a Member of American Society of Mechanical Engineers (ASME) and holds editorial positions at the Journal of Verification, Validation and Uncertainty Quantification (ASME), Mathematical Problems in Engineering and Heat Transfer Engineering (here as guest editor). He was the Chairman of the 10th International Conference on Inverse Problems in Engineering (ICIPE 22), May 15-19, 2022, Francavilla al Mare (Chiet), Italy, and is co-author of the Wiley 2nd Edition book: Inverse Heat Conduction: Ill-Posed Problems (Spring 2023), by Woodbury, Najafi, de Monte and Beck.
Giuseppe Pontrelli is a research director at Istituto per le Applicazioni del Calcolo of CNR in Rome. His research interests include applied mathematics, continuum mechanics and numerical analysis with application in biofluid dynamics, physiological flows at micro and nanoscale, mass transport, drug delivery systems. Over the years, he has worked on many research projects and developed, with a multi-disciplinary approach, mathematical models and computational methods for complex systems related to health.?He is the author of over 80 papers in international scientific periodicals and book chapters?and an associate editor of journals focusing on the above themes.
Prof. Dan Zhao is the director of Master Engineering Studies at the University of Canterbury, New Zealand.
He serves on a number of scientific journals as the chief and associate editors such as AIAA Journal, Journal
of the Royal Society of New Zealand, Aerospace Science and Technology, and Journal of Engineering for Gas
Turbines and Power (ASME). Prof. Zhao has been awarded with the prestigious fellowships from Engineering
New Zealand, European Academy of Sciences and Arts, European Academy of Sciences as well as the ASEAN
Academy of Engineering and Technology. His research expertise and interests include applying theoretical,
numerical, and experimental approaches to study CO2
-free combustion science and technology, fabric drying,
aeroacoustics, thermoacoustics; UAV aerodynamics; propulsion; energy harvesting; and renewable energy and
fuel (ammonia and hydrogen)

Altre Informazioni



Condizione: Nuovo
Dimensioni: 235 x 33 x 191 mm
Formato: Copertina rigida
Illustration Notes:Approx. 100 illustrations (100 in full color)
Pagine Arabe: 616

Dicono di noi