libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

pruitt lisa a.; chakravartula ayyana m. - mechanics of biomaterials
Zoom

Mechanics of Biomaterials Fundamental Principles for Implant Design

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
140,98 €
NICEPRICE
133,93 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 10/2011





Note Editore

Teaching mechanical and structural biomaterials concepts for successful medical implant design, this self-contained text provides a complete grounding for students and newcomers to the field. Split into three sections: Materials, Mechanics and Case Studies, it begins with a review of sterilization, biocompatibility and foreign body response before presenting the fundamental structures of synthetic biomaterials and natural tissues. Mechanical behavior of materials is then discussed in depth, covering elastic deformation, viscoelasticity and time-dependent behavior, multiaxial loading and complex stress states, yielding and failure theories, and fracture mechanics. The final section on clinical aspects of medical devices provides crucial information on FDA regulatory issues and presents case studies in four key clinical areas: orthopedics, cardiovascular devices, dentistry and soft tissue implants. Each chapter ends with a list of topical questions, making this an ideal course textbook for senior undergraduate and graduate students, and also a self-study tool for engineers, scientists and clinicians.




Sommario

Part I. Materials: 1. Biocompatibility, sterilization and materials selection for implant design; 2. Metals for medical implants; 3. Ceramics; 4. Polymers; 5. Mechanical behavior of structural tissues; Part II. Mechanics: 6. Elasticity; 7. Viscoelasticity; 8. Failure theories; 9. Fracture mechanics; 10. Fatigue; 11. Friction, lubrication and wear; Part III. Case Studies: 12. Regulatory affairs and testing; 13. Orthopedics; 14. Cardiovascular devices; 15. Oral and maxillofacial devices; 16. Soft tissue replacements; Appendix A. Selected topics from mechanics of materials; Appendix B. Table of material properties of engineering biomaterials and tissues; Appendix C. Teaching methodologies in biomaterials; Glossary; List of symbols.




Prefazione

Teaching mechanical and structural biomaterial concepts for successful implant design, this self-contained text is suitable for engineers, scientists and clinicians. Medical device case studies (including orthopedics, cardiovascular medicine, dentistry and soft tissues), step-by-step design guidelines and problem sets throughout, make this book ideal for course use and for self study.




Autore

Lisa A. Pruitt is the Lawrence Talbot Chair of Engineering at the University of California, Berkeley and also serves as an adjunct professor in the Department of Orthopedic Surgery at the University of California, San Francisco. She recently served as the Associate Dean of Lifelong Learning and Outreach Education in the College of Engineering and has received numerous awards including the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (2004) and the Graduate Student Instructor Mentor Award from the University of California, Berkeley (2009).
Ayyana M. Chakravartula received her Ph.D. in Mechanical Engineering from the University of California, Berkeley in 2005. She currently works at Exponent, Inc. in Menlo Park, CA, in its Mechanics and Materials practice. She has worked as a research scientist at the Cambridge Polymer Group in Boston, MA, and has served as an adjunct lecturer at Boston University. She has mentored numerous students, interns and research assistants in her graduate and postgraduate career.




Note Libraio

Teaching mechanical and structural biomaterials concepts for successful medical implant design, this self-contained text provides a complete grounding for students and newcomers to the field. Split into three sections: Materials, Mechanics and Case Studies, it begins with a review of sterilization, biocompatibility and foreign body response before presenting the fundamental structures of synthetic biomaterials and natural tissues. Mechanical behavior of materials is then discussed in depth, covering elastic deformation, viscoelasticity and time-dependent behavior, multiaxial loading and complex stress states, yielding and failure theories, and fracture mechanics. The final section on clinical aspects of medical devices provides crucial information on FDA regulatory issues and presents case studies in four key clinical areas: orthopedics, cardiovascular devices, dentistry and soft tissue implants. Each chapter ends with a list of topical questions, making this an ideal course textbook for senior undergraduate and graduate students, and also a self-study tool for engineers, scientists and clinicians.










Altre Informazioni

ISBN:

9780521762212

Condizione: Nuovo
Collana: Cambridge Texts in Biomedical Engineering
Dimensioni: 254 x 38 x 203 mm Ø 1620 gr
Formato: Copertina rigida
Illustration Notes:375 b/w illus. 35 tables 115 exercises
Pagine Arabe: 698


Dicono di noi