Mathematik Für Das Bachelorstudium I - Plaue Matthias; Scherfner Mike | Libro Springer Spektrum 02/2019 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

plaue matthias; scherfner mike - mathematik für das bachelorstudium i

Mathematik für das Bachelorstudium I Grundlagen und Grundzüge der linearen Algebra und Analysis

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
30,98 €
NICEPRICE
29,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Tedesco
Pubblicazione: 02/2019
Edizione: 2. Aufl. 2019





Trama

Dies ist ein Buch über die Mathematik, welches insbesondere die neuen Anforderungen des Bachelorstudiums sinnvoll bedient. Es behandelt die Grundlagen und danach den Stoff der linearen Algebra und eindimensionalen Analysis. Damit deckt es den Stoff ab, der an Universitäten wesentlich im ersten Semester behandelt wird. Dabei wenden wir uns an Physiker, Mathematiker sowie ambitionierte Lehramtskandidaten und Ingenieure.

Das Buch fördert sowohl das Verständnis als auch das konzentrierte Lernen für Klausuren und mündliche Prüfungen.

Auf einen Blick:

  • Klarer Stil, klare Sprache, klare Struktur.
  • Zahlreiche Erläuterungen.
  • Zu jedem Thema wird gesondert ein informativer Ein- und Ausblick geliefert.
  • Grafiken und viele Beispiele helfen beim Verstehen.
  • Fragen zum Selbsttest unterstützen zusätzlich beim Lernen.
  • Aufgaben mit vollständigen Lösungen dienen der Vertiefung und Vorbereitung auf Prüfungen jeglicher Art.





Sommario

Einleitung I Grundlagen 1 Elementare Logik und Mengenlehre 1.1 Einblick 1.2 Aussagen, Junktoren und Wahrheitstafeln 1.3 Sätze der Aussagenlogik 1.4 Prädikate und Quantoren 1.5 Mengen 1.6 Zahlen und Intervalle 1.7 Eigenschaften und Verknüpfungen von Mengen 1.8 Ausblick 1.9 Selbsttest 2 Definition, Satz, Beweis und mehr 2.1 Einblick 2.2 Grundlegendste Elemente bei der Formulierung von Mathematik 2.3 Formen des Beweisens 2.3.1 Direkte und indirekte Beweise 2.3.2 Konstruktive und nicht-konstruktive Beweise 2.3.3 Der Ringschluss 2.3.4 Das Gegenbeispiel 2.3.5 Vollständige Induktion 2.4 Ausblick 2.5 Selbsttest 3 Abbildungen 3.1 Einblick 3.2 Grundlegendes zu Abbildungen 3.3 Injektivität, Surjektivität, Bijektivität 3.4 Die Komposition von Abbildungen 3.5 Ausblick 3.6 Selbsttest 4 Körper und komplexe Zahlen 4.1 Einblick 4.2 Körper 4.3 Die komplexen Zahlen 4.4 Ausblick 4.5 Selbsttest Aufgaben zu den mathematischen Grundlagen II Lineare Algebra 5 Vektorräume 5.1 Einblick 5.2 Grundlegendes zu Vektorräumen 5.3 Ausblick 5.4 Selbsttest 6 Basen und Untervektorräume 6.1 Einblick 6.2 Spann und Erzeugendensystem 6.3 Lineare Unabhängigkeit, Basis 6.4 Eindeutigkeit der Basisdarstellung, Untervektorräume 6.5 Ausblick 6.6 Selbsttest 7 Lineare Abbildungen und Dimensionssätze 7.1 Einblick 7.2 Definition und Beispiele linearer Abbildungen 7.3 Kern und Bild linearer Abbildungen 7.4 Dimensionssätze 7.5 Ausblick 7.6 Selbsttest 8Matrizen 8.1 Einblick 8.2 Die darstellende Matrix einer linearen Abbildung 8.3 Der Rang einer Matrix 8.4 Das Matrizenprodukt 8.5 Besondere Matrizen 8.6 Ausblick 8.7 Selbsttest 9 Lineare Gleichungssysteme 9.1 Einblick 9.2 Grundlegendes zu linearen Gleichungssystemen und Gauß-Algorithmus 9.3 Struktur der Lösungsmenge eines linearen Gleichungssystems 9.4 Ausblick 9.5 Selbsttest 10 Die Determinante 10.1 Einblick 10.2 Der Laplace’sche Entwicklungssatz 10.3 Berechnung von Determinanten in einfachen Fällen 10.4 Eigenschaften der Determinanten 10.5 Ausblick 10.6 Selbsttest 11 Eigenwerte und Eigenvektoren 11.1 Einblick 11.2 Eigenwert, Eigenvektor und Eigenraum 11.3 Berechnung der Eigenwerte und Eigenvektoren 11.4 Algebraische und geometrische Vielfachheit von Eigenwerten 11.5 Ausblick 11.6 Selbsttest 12 Koordinatenabbildung und Basiswechsel 12.1 Einblick 12.2 Die Koordinatenabbildung 12.3 Darstellende Matrizen und Basiswechsel 12.4 Ausblick 12.5 Selbsttest 13 Diagonalisierung 13.1 Einblick 13.2 Diagonalisierbare Matrizen 13.3 Weitere Kriterien für Diagonalisierbarkeit 13.4 Ausblick 13.5 Selbsttest 14 Normierte, euklidische und unitäre Vektorräume 14.1 Einblick 14.2 Normierte Vektorräume 14.3 Skalarprodukte 14.4 Das Gram-Schmidt’sche Orthonormalisierungsverfahren 14.5 Orthogonale Abbildungen 14.6 Ausblick 14.7 Selbsttest Aufgaben zur linearen Algebra III Analysis 15 Grundzüge der Analysis 15.1 Einblick 15.2 Folgen und Konvergenz 15.2.1 Rechenregeln für




Autore

Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.

Mike Scherfner forscht vornehmlich in den Bereichen der Geometrie, mathematischen Physik und Mathematikdidaktik und lehrt Mathematik, Informatik und künstliche Intelligenz. Als Hochschullehrer setzt er sich insbesondere für die individuelle Förderung von Studierenden und neue Lehrkonzepte ein.









Altre Informazioni

ISBN:

9783662583517

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 522 gr
Formato: Brossura
Illustration Notes:1 Illustrations, black and white
Pagine Arabe: 327
Pagine Romane: xiv






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X