Handbook Of Quantile Regression - Koenker Roger (Curatore); Chernozhukov Victor (Curatore); He Xuming (Curatore); Peng Limin (Curatore) | Libro Chapman And Hall/Crc 11/2017 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

koenker roger (curatore); chernozhukov victor (curatore); he xuming (curatore); peng limin (curatore) - handbook of quantile regression

Handbook of Quantile Regression

; ; ;




Disponibilità: Normalmente disponibile in 10 giorni


PREZZO
124,98 €
NICEPRICE
118,73 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con App18 Bonus Cultura e Carta Docenti


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 11/2017
Edizione: 1° edizione





Note Editore

Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss. Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments. The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings. The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.




Sommario

A Quantile Regression Memoir - Gilbert W. Bassett Jr. and Roger Koenker Resampling Methods - Xuming He Quantile Regression: Penalized - Ivan Mizera Bayesian Quantile Regression - Huixia Judy Wang and Yunwen Yang Computational Methods for Quantile Regression - Roger Koenker Survival Analysis: A Quantile Perspective - Zhiliang Ying and Tony Sit Quantile Regression for Survival Analysis - Limin Peng Survival Analysis with Competing Risks and Semi-competing Risks Data - Ruosha Li and Limin Peng Instrumental Variable Quantile Regression - Victor Chernozhukov, Christian Hansen, and Kaspar Wuethrich Local Quantile Treatment Effects - Blaise Melly and Kaspar Wuethrich Quantile Regression with Measurement Errors and Missing Data - Ying Wei Multiple-Output Quantile Regression - Marc Hallin and Miroslav Siman Sample Selection in Quantile Regression: A Survey - Manuel Arellano and Stephane Bonhomme Nonparametric Quantile Regression for Banach-valued Response - Joydeep Chowdhury and Probal Chaudhuri High-Dimensional Quantile Regression - Alexandre Belloni, Victor Chernozhukov, and Kengo Kato Nonconvex Penalized Quantile Regression: A Review of Methods, Theory and Algorithms - Lan Wang QAR and Quantile Time Series Analysis - Zhijie Xiao Extremal Quantile Regression -Victor Chernozhukov, Ivan Fernandez-Val, and Tetsuya Kaji Quantile regression methods for longitudinal data - Antonio F. Galvao and Kengo Kato Quantile Regression Applications in Finance - Oliver Linton and Zhijie Xiao Quantile regression for Genetic and Genomic Applications - Laurent Briollais and Gilles Durrieu Quantile regression applications in ecology and the environmental sciences - Brian S. Cade




Autore

Roger Koenker, University of Illinois Victor Chernozhukov, MIT Xuming He, University of Michigan Limin Peng, Emory University







Altre Informazioni

ISBN:

9781498725286

Condizione: Nuovo
Collana: Chapman & Hall/CRC Handbooks of Modern Statistical Methods
Dimensioni: 10 x 7 in Ø 2.30 lb
Formato: Copertina rigida
Illustration Notes:106 b/w images, 12 tables, 32 halftones and 74 line drawings
Pagine Arabe: 463
Pagine Romane: xx






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X