Geometric Analysis Of Quasilinear Inequalities On Complete Manifolds - Bianchini Bruno; Mari Luciano; Pucci Patrizia; Rigoli Marco | Libro Birkhäuser 01/2021 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

bianchini bruno; mari luciano; pucci patrizia; rigoli marco - geometric analysis of quasilinear inequalities on complete manifolds

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds Maximum and Compact Support Principles and Detours on Manifolds

; ; ;




Disponibilità: solo 1 copia disponibile, compra subito!

Se ordini entro 5 ore e 3 minuti, consegna garantita in 48 ore lavorative
scegliendo le spedizioni Express



PREZZO
57,30 €
NICEPRICE
54,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Birkhäuser

Pubblicazione: 01/2021
Edizione: 1st ed. 2021





Sommario

- Some Geometric Motivations. - An Overview of Our Results. - Preliminaries from Riemannian Geometry. - Radialization and Fake Distances. - Boundary Value Problems for Nonlinear ODEs. - Comparison Results and the Finite Maximum Principle. - Weak Maximum Principle and Liouville’s Property. - StrongMaximum Principle and Khas’minskii Potentials. - The Compact Support Principle. - Keller–Osserman, A Priori Estimates and the (SL) Property.




Trama

This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.







Altre Informazioni

ISBN:

9783030627034

Condizione: Nuovo
Collana: Frontiers in Mathematics
Dimensioni: 240 x 168 mm Ø 505 gr
Formato: Brossura
Illustration Notes:1 Illustrations, black and white
Pagine Arabe: 286
Pagine Romane: x






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X