Far-Field Optical Nanoscopy - Tinnefeld Philip (Curatore); Eggeling Christian (Curatore); Hell Stefan W. (Curatore) | Libro Springer 03/2015 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

tinnefeld philip (curatore); eggeling christian (curatore); hell stefan w. (curatore) - far-field optical nanoscopy

Far-Field Optical Nanoscopy

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
302,98 €
NICEPRICE
287,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 03/2015
Edizione: 2015





Trama

This book describes developments in the field of super-resolution fluorescence microscopy or nanoscopy. In 11 chapters, distinguished scientists and leaders in their respective fields describe different nanoscopy approaches, various labeling technologies, and concrete applications. The topics covered include the principles and applications of the most popular nanoscopy techniques STED and (f)PALM/STORM, along with advances brought about by fluorescent proteins and organic dyes optimized for fluorescence nanoscopy. Furthermore, the photophysics of fluorescent labels is addressed, specifically for improving their photoswitching capabilities. Important applications are also discussed, such as the tracking and counting of molecules to determine acting forces in cells, and quantitative cellular imaging, respectively, as well as the mapping of chemical reaction centers at the nano-scale.

The 2014 Chemistry Nobel Prize® was awarded for the ground-breaking developments of super-resolved fluorescence microscopy. In this book, which was co-edited by one of the prize winners, readers will find the most recent developments in this field.





Sommario

Part I: Optical Nanoscopy Techniques

 STED Fluorescence Nanoscopy
Christian Eggeling, Stefan W. Hell

 Super-Resolution Imaging Through Stochastic Switching and Localization of Single Molecules: An Overview
Ke Xu, Sang-Hee Shim, and Xiaowei Zhuang

 A Practical Guide to dSTORM: Super-Resolution Imaging with Standard Fluorescent Probes
Markus Sauer

 Part II: Labelling Technology for Optical Nanoscopy

 Single-Molecule Photocontrol and Nanoscopy
Matthew D. Lew, Steven F. Lee, Michael A. Thompson, Hsiao-lu D. Lee, and W. E. Moerner

 Probes for Nanoscopy: Fluorescent Proteins
Susan Gayda, Per Niklas Hedde, Karin Nienhaus, and G. Ulrich Nienhaus

 Tailoring Fluorescent Labels for Far-Field Nanoscopy
Dmytro A. Yushchenko and Marcel P. Bruchez

 Probes for Nanoscopy: Photoswitchable Fluorophores
Pedro F. Aramendia and Mariano L. Bossi

 Far-Field Nanoscopy with Conventional Fluorophores: Photostability, Photophysics, and Transient Binding
Thorben Cordes, Jan Vogelsang, Christian Steinhauer, Ingo H. Stein, Carsten Forthmann, Andreas Gietl, Jürgen J. Schmied, Guillermo P. Acuna, Sebastian Laurien, Birka Lalkens, and Philip Tinnefeld

 Part III: Developments and Applications of Optical Nanoscopy

 NASCA Microscopy: Super-Resolution Mapping of Chemical Reaction Centers
Gert De Cremer, Bert F. Sels, Dirk E. De Vos, Johan Hofkens, and Maarten B.J. Roeffaers

 Counting Molecules: Toward Quantitative Imaging
Maximilian H. Ulbrich

 In Vivo Tracking of Single Biomolecules: What Trajectories Tell Us About the Acting Forces
Mario Brameshuber and Gerhard J. Schütz

 

 





Autore

Stefan W. Hell is director at the Max Planck Institute for Biophysical Chemistry in Göttingen and leads the Department of NanoBiophotonics, as well as the High Resolution Optical Microscopy division at the German Cancer Research Center (DKFZ) in Heidelberg. He is honorary professor of experimental physics at the University of Göttingen and holds a position as adjunct professor of physics at the University of Heidelberg.

Stefan Hell has invented the first method, which took optical microscopy into the nano-dimension, breaking Abbe’s diffraction-limited resolution barrier. This breakthrough has been honored with the 2014 Nobel Prize® in Chemistry, awarded jointly to Stefan W. Hell and his colleagues Eric Betzig and William E. Moerner.

Hell received his PhD from the University of Heidelberg in 1990 and worked at the European Molecular Biology Laboratory Heidelberg (EMBL) from 1991 to 1993. Afterwards he worked as senior researcher at the University of Turku, Finland and visiting scientist at the University of Oxford, England, before moving to the Max Planck Institute for Biophysical Chemistry in Göttingen in 1997. After building up his research group at the institute, he was appointed as a director in 2002 and established the department of Nanobiophotonics at the institute.

Christian Eggeling is Professor of Molecular Immunology at the University of Oxford and Scientific Director at the Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine. Eggeling received his PhD from the Georg-August University Göttingen. Afterwards he did postdoctoral research at the Karolinska-Institute in Stockholm, Sweden. From 2000 to 2004 Eggeling worked at the company Evotec OAI AG Hamburg, before joining the NanoBiophotonics department of Stefan Hell at the Max-Planck-Institute for Biophysical Chemistry in Göttingen. In 2012 he moved to Oxford as Group Leader of the MRC Human Immunology Unit (HIU).

Philip Tinnefeld is Professor of Biophysical Chemistry at the TU Braunschweig. He received his PhD in Physical Chemistry from the University of Heidelberg. Afterwards he did research at the Universities of California in Los Angeles, Heidelberg, Leuven, and Bielefeld. From 2007 to 2010 Tinnefeld was Professor of Biophysics at LMU München, before moving to Braunschweig, where he now leads the group of NanoBioSciences at the Institute of Physical and Theoretical Chemistry of the TU Braunschweig.








i libri che interessano a chi ha i tuoi gusti





Altre Informazioni

ISBN:

9783662455463

Condizione: Nuovo
Collana: Springer Series on Fluorescence
Dimensioni: 235 x 155 mm Ø 6447 gr
Formato: Copertina rigida
Illustration Notes:30 Illustrations, black and white
Pagine Arabe: 335
Pagine Romane: xii






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X