home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

covey jacob p. - enhanced optical and electric manipulation of a quantum gas of krb molecules

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2019
Edizione: Softcover reprint of the original 1st ed. 2018





Trama

This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations.

Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected.

Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.




Sommario

Chapter1. Introduction.- Chapter2. Experimental Background and Overview.- Chapter 3. Quantum-State Controlled Chemical Reactions and Dipolar Collisions.-  Chapter 4. Suppression of Chemical Reactions in a 3D Lattice.- Chapter 5. Quantum Magnetism with Polar Molecules in a 3D Optical Lattice.- Chapter 6. A Low Entropy Quantum Gas of Polar Molecules in a 3D Optical Lattice.- Chapter 7. The New Apparatus – Enhanced Optical and Electric Manipulation of Ultracold Polar Molecules.- Chapter 8. Designing, Building and Testing the New Apparatus.- Chapter 9. Experimental Procedure – Making Molecules in the New Apparatus.- Chapter 10. New Physics with the New Apparatus – High Resolution Optical Detection and Large, Stable Electric Fields.- Chapter 11. Outlook.





Autore

Jacob Covey received his PhD in 2017 for research undertaken at JILA, the University of Colorado, Boulder, and NIST. He holds a postdoctoral research position at Caltech. 










Altre Informazioni

ISBN:

9783030074524

Condizione: Nuovo
Collana: Springer Theses
Dimensioni: 235 x 155 mm Ø 454 gr
Formato: Brossura
Illustration Notes:XVI, 249 p. 148 illus., 142 illus. in color.
Pagine Arabe: 249
Pagine Romane: xvi


Dicono di noi