1. Introduction.- References.- 2. The Simplest Ab Initio Theory of Electronic Structure.- 2.1 Tight-Binding Theory.- 2.2 Universal Parameters.- 2.3 A Diatomic Molecule, N2.- 2.4 A Simplification Using Hybrids.- 2.5 Cohesion of N2.- 2.6 Polarizability of N2.- 2.7 Tetrahedral Semiconductor Bonds.- 2.8 Semiconductor Energy Bands.- 2.9 Cohesion in Semiconductors.- 2.10 The Dielectric Properties.- 2.11 Ionic Crystals.- 2.12 Covalency in Ionic Compounds.- 2.13 Transition-Metal Compounds.- 2.14 Summary.- References.- 3. Theory of Electronic Excitations in Solids.- 3.1 Quasiparticle Theory of Electron Excitations.- 3.2 Band Gaps and Excitation Spectra of Bulk Crystals.- 3.3 Surfaces, Interfaces, Superlattices, and Clusters.- 3.4 Model Dielectric Matrix.- 3.5 Summary and Conclusions.- References.- 4. Determination of the Electronic Structure of Solids.- 4.1 Band Mapping with Photoemission and Inverse Photoemission.- 4.2 Understanding Semiconductors from First Principles.- 4.3 Magnetic Storage and Thin Film Magnetism.- 4.4 Optoelectronics and Excited State Spectroscopy.- 4.5 Spatial Resolution.- 4.6 Packaging, Polymers, and Core Levels.- 4.7 Summary.- References.- 5. Predicting the Properties of Solids, Clusters and Superconductors.- 5.1 Background.- 5.2 Surfaces and Interfaces.- 5.3 Total Energies and Structural Properties.- 5.4 Compressibilities and Empirical Theories.- 5.5 Metallic Clusters.- 5.6 Superconductivity.- 5.7 Conclusions.- References.- 6. High-Temperature Superconductivity: The Experimental Situation.- 6.1 Structural and Chemical Nature of the New Materials.- 6.2 The Superconducting State: Macroscopic Properties.- 6.3 Microscopic Superconducting Properties.- 6.3.1 Pairing.- 6.3.2 Pairing Mechanism.- 6.4 Theoretical Considerations and Discussion.- References.- 7. Surface Structure and Bonding of Tetrahedrally Coordinated Compound Semiconductors.- 7.1 Key Concepts in Semiconductor Surface Chemistry.- 7.2 Zincblende (110) Surfaces.- 7.3 Wurtzite Cleavage Surfaces.- 7.3.1 Wurtzite (10
$$\bar 1$$
10).- 7.3.2 Wurtzite (11
$$\bar 2$$
20).- 7.4 Adsorption on Zincblende (110) Surfaces.- 7.4.1 Epitaxically Constrained Adsorbate Bonding.- 7.4.2 Process-Dependent Bonding: Reactive Chemisorption.- 7.5 Synopsis.- References.- 8. Formation and Properties of Metal-Semiconductor Interfaces.- 8.1 Experimental Techniques and Analysis.- 8.1.1 Photoelectron Spectroscopy.- 8.1.2 Experimental Procedures.- 8.1.3 Samples and Deposition Procedures.- 8.1.4 Core-Level Lineshape Analysis.- 8.2 Interface Formation at 300 K.- 8.2.1 Co/GaAs.- 8.2.2 Reactive Interfaces.- 8.2.3 Au III-V Interfaces.- 8.3 Low-Temperature Interface Formation.- 8.3.1 Ti/GaAs(110).- 8.3.2 Co/GaAs(110).- 8.3.3 Ag/GaAs(110).- 8.4 Surface Photovoltaic Effects.- 8.4.1 Dependence of Band Bending on Temperature and Bulk Dopant Concentration.- 8.4.2 Photoemission from Metallic Dots.- 8.5 Interface Formations with Metal Ions.- 8.5.1 Ag/ZnSe(100).- 8.5.2 In/GaAs(110) and Ag/InP(110).- 8.6 Interfaces Formed by Metal Cluster Deposition.- 8.6.3 Cluster Morphology.- 8.6.4 Cluster Metallicity and Substrate Modification.- 8.6.5 Cluster-Induced Band Bending.- 8.7 Prospects and Future Developments.- References.- 9. Electronic States in Semiconductor Superlattices and Quantum Wells: An Overview.- 9.1 Envelope-Function Description of Electronic States.- 9.1.1 Generalities.- 9.1.2 Discussion of the Envelope-Function Approximation.- 9.1.3 Examples of Results.- a) GaAs-A1xGa1-x As.- b) InAs-GaSb Superlattices and Quantum Wells.- c) CdTe-HgTe Superlattices.- 9.2 External Fields.- 9.2.1 Generalities.- 9.2.2 Electric Fields.- 9.2.3 Landau Levels: Perpendicular Fields.- 9.2.4 Landau Levels: Parallel Fields.- 9.3 Excitons in Quantum Wells.- References.- 10. Photonic and Electronic Devices Based on Artificially Structured Semiconductors.- 10.1 Resonant Tunneling Bipolar Transistors with a Double Barrier in the Base.- 10.1.1 Design Considerations for RTBTs with Ballistic Injection.- 10.1.2 Quasi-Ballistic Resonant Tunneling in a Tunneling Emitter RTBT.- 10.1.3 Thermionic Injection RTBTs Operating at Room Temperature.- 10.1.4 Speed and Threshold Uniformity Considerations in RTBTs.- 10.2 Devices with Multiple Peak I-V Characteristics and Multiple-State RTBTs.- 10.2.1 Vertical Integration of RT Diodes.- 10.2.2 Multiple-State RTBTs.- 10.2.3 Microwave Performance of Multiple-State RTBTs.- 10.3 Circuit Applications of Multiple-State RTBTs.- 10.3.1 Frequency Multiplier.- 10.3.2 Parity Generator.- 10.3.3 Multistate Memory.- 10.3.4 Analog-to-Digital Converter.- 10.4 Gated Quantum Well and Superlattice-Base Transistors.- 10.4.1 Gated Quantum Well Transistor.- 10.4.2 Superlattice-Base HBT.- 10.4.3 Unipolar Superlattice-Base Transistor.- 10.5 Quasi-Electric Fields in Graded-Gap Materials.- 10.5.1 Electron Velocity Measurements.- 10.6 Heterojunction Bipolar Transistors with Graded-Gap Layers.- 10.6.1 High-Speed Graded-Base Transistors.- 10.6.2 Emitter Grading in Heterojunction Bipolar Transistors.- 10.7 Multilayer Sawtooth Materials.- 10.7.1 Rectifiers.- 10.7.2 Electrical Polarization Effects in Sawtooth Superlattices.- 10.7.3 Staircase Structures.- a) Staircase Solid-State Photomultipliers and Avalanche Photodiodes.- b) Repeated Velocity Overshoot Devices.- 10.8 AlGaAs Floating-Gate Memory Devices with Graded-Gap Injector.- 10.8.1 Integration in Arrays.- References.- 11. Quantum Structural Diagrams.- 11.1 Interatomic Forces.- 11.2 Ionic Crystals.- 11.3 Covalent Crystals.- 11.4 Metallic Compounds and Alloys.- 11.5 Molecular Structure Diagrams.- 11.6 Deductive Calculations.- 11.7 Prospects.- References.- 12. Ion and Laser Beam Processing of Semiconductors: Phase Transitions in Silicon.- 12.1 Ion Implantation.- 12.2 Amorphization and Solid Phase Epitaxy.- 12.3 Ion-Beam Induced Epitaxy, Diffusion and Segregation.- 12.4 Thermodynamic and Kinetic Properties of Amorphous Si.- 12.5 Liquid Phase Crystal Growth and Dopant Segregation.- 12.6 Melting of Amorphous Si: A First-Order Phase Transition.- 12.7 Conclusion: Undercooling and Explosive Crystallization.- 12.8 Update: The State of Amorphous Si.- References.