Differential Geometry Of Curves And Surfaces - Kobayashi Shoshichi | Libro Springer 11/2019 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

kobayashi shoshichi - differential geometry of curves and surfaces

Differential Geometry of Curves and Surfaces




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
36,98 €
NICEPRICE
31,43 €
SCONTO
15%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con App18 Bonus Cultura e Carta Docenti


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 11/2019
Edizione: 1st ed. 2019





Sommario

Plane Curves and Space Curves.- Local Theory of Surfaces in the Space.- Geometry of Surfaces.- The Gauss-Bonnet Theorem.- Minimal Surfaces. 




Trama

This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka.

There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces.

Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced.  The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space.  In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain.  Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number ?(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis.  However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2. 





Autore

Professor Shoshichi Kobayashi was a Professor Emeritus at University of California, Berkeley. He passed away on August 29 in 2012. He was a student of Professor Kentaro Yano at the University of Tokyo. He was one of famous differential geometers not only in Japan but also in the world. He wrote 15 books both in Japanese and in English. 







Altre Informazioni

ISBN:

9789811517389

Condizione: Nuovo
Collana: Springer Undergraduate Mathematics Series
Dimensioni: 235 x 155 mm Ø 320 gr
Formato: Brossura
Illustration Notes:1 Illustrations, black and white
Pagine Arabe: 192
Pagine Romane: xii
Traduttore: Shinozaki Nagumo, Eriko; Sumi Tanaka, Makiko






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X