home libri books Fumetti ebook dvd top ten sconti 0 Carrello

Torna Indietro

iosifidis alexandros (curatore); tefas anastasios (curatore) - deep learning for robot perception and cognition

Deep Learning for Robot Perception and Cognition


Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.

113,98 €
108,28 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese
Pubblicazione: 03/2022

Note Editore

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks.

  • Presents deep learning principles and methodologies
  • Explains the principles of applying end-to-end learning in robotics applications
  • Presents how to design and train deep learning models
  • Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more
  • Uses robotic simulation environments for training deep learning models
  • Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis


1. Introduction 2. Neural Networks and Backpropagation 3. Convolutional Neural Networks 4. Graph Convolutional Networks 5. Recurrent Neural Networks 6. Deep Reinforcement Learning 7. Lightweight Deep Learning 8. Knowledge Distillation 9. Progressive and Compressive Deep Learning 10. Representation Learning and Retrieval 11. Object Detection and Tracking 12. Semantic Scene Segmentation for Robotics 13. 3D Object Detection and Tracking 14. Human Activity Recognition 15. Deep Learning for Vision-based Navigation in Autonomous Drone Racing 16. Robotic Grasping in Agile Production 17. Deep learning in Multiagent Systems 18. Simulation Environments 19. Biosignal time-series analysis 20. Medical Image Analysis 21. Deep learning for robotics examples using OpenDR


Alexandros Iosifidis is a Professor at Aarhus University, Denmark. He leads the Machine Learning and
Computational Intelligence group at the Department of Electrical and Computer Engineering. He received his Ph.D.
from the Department of Informatics at Aristotle University of Thessaloniki, Greece in 2014. He participated in more
than 15 research and development projects financed by national and European funds.
Anastasios Tefas received the B.Sc. in Informatics in 1997 and the Ph.D. degree in Informatics in 2002, both from
the Aristotle University of Thessaloniki, Greece. Since 2017, he has been an Associate Professor at the Department of
Informatics, Aristotle University of Thessaloniki. Dr. Tefas participated in 20 research projects financed by national and
European funds. He is the coordinator of the H2020 project OpenDR, "Open Deep Learning Toolkit for Robotics.

Altre Informazioni



Condizione: Nuovo
Dimensioni: 235 x 191 mm
Formato: Brossura
Pagine Arabe: 634

Dicono di noi