De Rham Cohomology Of Differential Modules On Algebraic Varieties - André Yves; Baldassarri Francesco; Cailotto Maurizio | Libro Birkhäuser 07/2020 -

home libri books ebook dvd e film top ten sconti 0 Carrello

Torna Indietro

andré yves; baldassarri francesco; cailotto maurizio - de rham cohomology of differential modules on algebraic varieties

De Rham Cohomology of Differential Modules on Algebraic Varieties

; ;

Disponibilità: Normalmente disponibile in 10 giorni

108,98 €
103,53 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese


Pubblicazione: 07/2020
Edizione: 2nd ed. 2020


This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ­ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi­ cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities).


1 Regularity in several variables.- §1 Geometric models of divisorially valued function fields.- §2 Logarithmic differential operators.- §3 Connections regular along a divisor.- §4 Extensions with logarithmic poles.- §5 Regular connections: the global case.- §6 Exponents.- Appendix A: A letter of Ph. Robba (Nov. 2, 1984).- Appendix B: Models and log schemes.- 2 Irregularity in several variables.- §1 Spectral norms.- §2 The generalized Poincaré-Katz rank of irregularity.- §3 Some consequences of the Turrittin-Levelt-Hukuhara theorem.- §4 Newton polygons.- §5 Stratification of the singular locus by Newton polygons.- §6 Formal decomposition of an integrable connection at a singular divisor.- §7 Cyclic vectors, indicial polynomials and tubular neighborhoods.- 3 Direct images (the Gauss-Manin connection).- §1 Elementary fibrations.- §2 Review of connections and De Rham cohomology.- §3 Dévissage.- §4 Generic finiteness of direct images.- §5 Generic base change for direct images.- §6 Coherence of the cokernel of a regular connection.- §7 Regularity and exponents of the cokernel of a regular connection.- §8 Proof of the main theorems: finiteness, regularity, monodromy, base change (in the regular case).- Appendix C: Berthelot’s comparison theorem on OXDX-linear duals.- Appendix D: Introduction to Dwork’s algebraic dual theory.- 4 Complex and p-adic comparison theorems.- §1 Review of analytic connections and De Rham cohomology.- §2 Abstract comparison criteria.- §3 Comparison theorem for algebraic vs.complex-analytic cohomology.- §4 Comparison theorem for algebraic vs. rigid-analytic cohomology (regular coefficients).- §5 Rigid-analytic comparison theorem in relative dimension one.- §6 Comparison theorem for algebraic vs. rigid-analytic cohomology (irregular coefficients).- §7 The relative non-archimedean Turrittin theorem.- Appendix E: Riemann’s “existence theorem” in higher dimension, an elementary approach.- References.

Altre Informazioni



Condizione: Nuovo
Collana: Progress in Mathematics
Dimensioni: 235 x 155 mm Ø 553 gr
Formato: Copertina rigida
Pagine Arabe: 241
Pagine Romane: xiv

Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.