Data Science For Fake News - P Deepak; Chakraborty Tanmoy; Long Cheng; G Santhosh Kumar | Libro Springer 04/2021 -

home libri books ebook dvd e film top ten sconti 0 Carrello

Torna Indietro

p deepak; chakraborty tanmoy; long cheng; g santhosh kumar - data science for fake news

Data Science for Fake News Surveys and Perspectives

; ; ;

Disponibilità: Normalmente disponibile in 15 giorni

140,98 €
133,93 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese


Pubblicazione: 04/2021
Edizione: 1st ed. 2021


This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools.

The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news.

The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.


A Multifaceted Approach to Fake News.- Part I: Survey.- On Unsupervised Methods for Fake News Detection.- Multi-modal Fake News Detection.- Deep Learning for Fake News Detection.- Dynamics of Fake News Diffusion.- Neural Language Models for (Fake?) News Generation.- Fact Checking on Knowledge Graphs.- Graph Mining Meets Fake News Detection.- Part II: Perspectives.- Fake News in Health and Medicine.- Ethical Considerations in Data-Driven Fake News Detection.- A Political Science Perspective on Fake News.- A Political Science Perspective on Fake News.- Fake News and Social Processes: A Short Review.- Misinformation and the Indian Election: Case Study.- STS, Data Science, and Fake News: Questions and Challenges.- Linguistic Approaches to Fake News Detection.


Deepak P is an Assistant Professor of Computer Science at Queen’s University Belfast, UK. Prior to this, he was a research scientist at IBM Research. His research interests include ethics for machine learning, natural language processing, and information retrieval. He is a senior member of the IEEE and the ACM, and has authored 90+ publications and is an inventor on 10+ patents.

Tanmoy Chakraborty is an Assistant Professor at the Department of Computer Science and Engineering, IIIT Delhi, India. Prior to this, he was a postdoctoral associate at University of Maryland, College Para, USA. His research interests include data mining, social media analysis and natural language processing.

Cheng Long is an Assistant Professor at the School of Computer Science and Engineering, Nanyang Technological University, Singapore. From 2016 to 2018, he worked as a lecturer at Queen's University Belfast, UK. His research interests are in data management, data mining and machine learning.

Santhosh Kumar G is a full Professor at the Department of Computer Science, Cochin University of Science and Technology, Kerala, India. His research interests include cyber physical systems, machine learning and natural language processing.

Altre Informazioni



Condizione: Nuovo
Collana: The Information Retrieval Series
Dimensioni: 235 x 155 mm Ø 641 gr
Formato: Copertina rigida
Illustration Notes:53 Illustrations, black and white
Pagine Arabe: 302
Pagine Romane: xiv

Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.