A Geometric Approach To Thermomechanics Of Dissipating Continua - Rakotomanana Lalao | Libro Birkhäuser Boston 10/2003 - HOEPLI.it

home libri books ebook dvd e film top ten sconti 0 Carrello

Torna Indietro

rakotomanana lalao - a geometric approach to thermomechanics of dissipating continua

A Geometric Approach to Thermomechanics of Dissipating Continua

Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.

124,98 €
118,73 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con App18 Bonus Cultura e Carta Docenti

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese
Pubblicazione: 10/2003
Edizione: 2004


1. Introduction * 2. Geometry and Kinematics * 3. Conservation Laws * 4. Continuum with Singularity * 5. Thermo-Viscous Fluids * 6. Thermo-Viscous Solids * 7. Solids with Dry Micro-Cracks * 8. Conclusion * App. A. Mathematical Preliminaries * App. B. Invariance Group and Physical Laws * App. C Affinely Connected Manifolds * App. D Bianchi's identities * App. E Theorem of Cauchy-Weyl * References * Index


Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.

Altre Informazioni



Condizione: Nuovo
Collana: Progress in Mathematical Physics
Dimensioni: 235 x 155 mm Ø 1270 gr
Formato: Copertina rigida
Pagine Arabe: 265
Pagine Romane: xv

Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.