Errata Corrige di “Java 7”

pag. 17 - par. 1.6 - testo nel riquadro dalla 4a riga
Non ¢ specificato che i 2 punti sono validi solo in ambiente Windows. Manca quindi il seguente

punto:
- In ambienti Unix-Linux, tenere premuto SHIFT - ALT GR, e poi il tasto con
il simbolo della parentesi quadra aperta "[".

pag. 19 - par. 1.6 - testo nel primo riquadro dalla 4a riga
Non ¢ specificato che i 2 punti sono validi solo in ambiente Windows. Manca quindi il seguente

punto:
- In ambienti Unix-Linux, tenere premuto SHIFT - ALT GR, e poi il tasto con
il simbolo della parentesi quadra aperta "]".

pag. 18 - par. 1.6 - prima riga della pagina
A gquesto punto possiamo iniziare ad aprire un prompt di Dos e spostarci
all'interno

dato che tutti 1 comandi funzionano sia in Windows che in ambienti Unix-Linux, in realta é&:

A guesto punto possiamo iniziare ad aprire un prompt di Dos in Windows
(oppure una shell in ambiente Unix-Linux) e spostarci all'interno

pag. 75 — par. 3.2.5 — Quinta riga del paragrafo

con esso siamo in gradi di rappresentare
in realta ¢:
con esso siamo in grado di rappresentare

pag. 75 - par. 3.2.5 — terzultima riga
\n che equivale ad andare a capo (tasto return)

in realta ¢:
\n che equivale ad andare a capo (new line)

pag. 101 — par 4.1.4 — Ultima riga della prima tabella

Shift a destra senza segno di assegnazione >>=
in realta €

Shift a destra senza segno di assegnazione >>>=

pag. 106 - par. 4.1.8 - Seconda riga tabella
- + -

da sx a dx ++ - ~ ! (tipi di dati)
in realta e:

da sx a dx ++ -~ ! (tipi di dati)



pag. 171 - par. 6.2.4 — Secondo riquadro che riporta linee di codice
public boolean equals (Object obj) {
if (obj instanceof Punto) return false;
Punto that = (Punto obj);
return this.x == that.x && this.y == that.y;

in realta e:

public boolean equals (Object obj) {
if (obj instanceof Punto) {
Punto that = (Punto) obj;
return this.x == that.x && this.y == that.y;
} else return false;

pag. 300 — Par. 10.8 — Esercizio 10.a) numero 1
Ogni eccezione che estende in qualche modo una ArithmeticException & una
checked exception

in realta e:

Ogni eccezione che estende in qualche modo una ArithmeticException € una
unchecked exception

pag. 353 - par. 12.1.5 - Dalla fine della settima riga dopo tabella e

riquadro
Esistono code FIFO (che sta per "First In First Out") che definiscono come
testa della coda i1l primo elemento inserito. Un'implementazione di coda FIFO
l'abbiamo gia wvista: la classe LinkedList, che mette a disposizione i metodi
addLast (), getlLast() e removelast (). In realta LinkedList implementa anche
la classe Deque e quindi pud essere utilizzata come coda LIFO (che sta per
"Last In First Out") dove testa della coda & il 1l'ultimo elemento inserito.
Infatti mette a disposizione anche i metodi addFirst (), getFirst() e
removeFirst () .

in realta é:

Esistono code LIFO (che sta per "Last In First Out") che definiscono come
testa della coda l'ultimo elemento inserito. Un'implementazione di coda LIFO
1'abbiamo gia vista: la classe LinkedList, che mette a disposizione i metodi
addLast (), getlLast() e removelast (). In realta LinkedList implementa anche
1’interfaccia Deque e quindi pud essere utilizzata come coda FIFO (che sta
per "First In First Out") dove testa della coda € il primo elemento
inserito. Infatti mette a disposizione anche i1 metodi addFirst (), getFirst /()
e removeFirst ().

pag. 373 - par. 12.2.1 - 8° punto (checkbox)
String substring(int startIndex, int number) restituisce una sottostringa
della stringa corrente, composta dal numero number di caratteri che partono
dall'indice startIndex

in realta é:

String substring(int startIndex, int endIndex) restituisce una sottostringa



della stringa corrente, composta dai caratteri che partono dall'indice
startIndex fino all'indice endIndex

pag. 420 — par. 13.6 — sette righe prima della fine della pagina

piu' complessi ed efficienti si semplificato
in realta e:
piu' complessi ed efficienti si e semplificato

pag. 430, 431, 434, 435 — par. 14.2.2 e 14.3.1 — esercizio JDBCApp

Gli esempi non compilano in quanto:

1) le variabili res, con, cmd devono essere definiti prima della try principale come segue:

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
try {

2) la parte finally vuole la gestione via try() catch() delle close() come segue:

finally {
if (rs != null) {
try {
rs.close();
} catch (SQLException e) {
e.printStackTrace() ;
}
}

rs = null;
if (stmt !'= null) {
try {

stmt.close () ;
} catch (SQLException e) {
e.printStackTrace () ;
}
}
stmt = null;
if (conn != null) {
try {
conn.close();
} catch (SQLException e) {
e.printStackTrace () ;

}

conn = null;

pag 442 — par. 14.3.10 — intero paragrafo
Le novita introdotte dalla versione 4.0 in poi in cui si parla anche nelle pagine seguenti, in realta
non sono state introdotte nella versione definitiva di Java 7. Il libro ¢ stato scritto precedentemente
all’uscita della versione stabile quando sembrava che tutte le interfacce definite (Select, Update,
BaseQuery, DataSet etc.) sembrassero dover rientrare nei piani di Oracle.



pag. 448 — par. 14.3.10 — penultima riga
ResultSet rs = stmt.executeQuery ("SELECT * FROM PERSONA"™)) {.....

in realta e:
ResultSet rs = stmt.executeQuery ("SELECT * FROM PERSONA")); {.....

pag 487 — par. 15.4.2 - penultima riga prima della nota
Una buona programmazione ad oggetti richiederebbe che ogni evento abbia il
suo "gestore personale"

in realta é:

Una buona programmazione ad oggetti richiede che ogni evento abbia il suo
"gestore personale"

pag. 577 - par. 18.2.1 - seconda riga del primo riquadro della pagina
import applicazione.utility.db.*;

in realta e:

import applicazione.db.utility.*;



	Errata Corrige di “Java 7”

